Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chlor...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2005-09, Vol.59 (2), p.309-322 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 309 |
container_title | Plant molecular biology |
container_volume | 59 |
creator | Saski, C Lee, S.B Daniell, H Wood, T.C Tomkins, J Kim, H.G Jansen, R.K |
description | Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11103-005-8882-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20243042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20243042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-305f258b0f9c12f77a4f926e672040e79f5cb19b0649e28093115eb3a13ae72b3</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhi3USmxpH4ATFofeAjN2HCfHagULEhIHytly3PFukBNv7Sx03x6j9MTJGun_fo2_Yewc4QoB9HVGRJAVgKrathUVnLAVKi0rBaL9wlaAja7qGsUp-5bzC0ChZLNifh3HfaCZuNuFmOI-2DzzLU1xJJ7p74EmRzx6vglHN0zER_uP2-kPd4Wzyc7DK5XZhmOmzN-GecfjvKPEA20PpWJpyt_ZV29Dph__3zP2fHvze31XPTxu7te_HionhZ4rCcoL1fbgO4fCa21r34mGGi2gBtKdV67Hroem7ki00ElERb20KC1p0csz9nPp3adYds-zGYfsKAQ7UTxkI0DUEmpRgpefgi_xkMo_stFNB6rBVpUQLiGXYs6JvNmnYbTpaBDMh3azaDdFu_nQbqAwFwvjbTR2m4Zsnp8EoCzGVVeXk7wDdgx-tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>769056185</pqid></control><display><type>article</type><title>Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes</title><source>SpringerNature Journals</source><creator>Saski, C ; Lee, S.B ; Daniell, H ; Wood, T.C ; Tomkins, J ; Kim, H.G ; Jansen, R.K</creator><creatorcontrib>Saski, C ; Lee, S.B ; Daniell, H ; Wood, T.C ; Tomkins, J ; Kim, H.G ; Jansen, R.K</creatorcontrib><description>Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-005-8882-0</identifier><language>eng</language><publisher>The Hague: Springer Nature B.V</publisher><subject>Alfalfa ; Arabidopsis ; chloroplast DNA ; Chloroplasts ; gene duplication ; Genes ; Genetic engineering ; genome ; Glycine max ; inverted repeats ; Legumes ; Lotus ; Medicago ; molecular sequence data ; nucleotide sequences ; repetitive sequences ; Soybeans</subject><ispartof>Plant molecular biology, 2005-09, Vol.59 (2), p.309-322</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-305f258b0f9c12f77a4f926e672040e79f5cb19b0649e28093115eb3a13ae72b3</citedby><cites>FETCH-LOGICAL-c327t-305f258b0f9c12f77a4f926e672040e79f5cb19b0649e28093115eb3a13ae72b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Saski, C</creatorcontrib><creatorcontrib>Lee, S.B</creatorcontrib><creatorcontrib>Daniell, H</creatorcontrib><creatorcontrib>Wood, T.C</creatorcontrib><creatorcontrib>Tomkins, J</creatorcontrib><creatorcontrib>Kim, H.G</creatorcontrib><creatorcontrib>Jansen, R.K</creatorcontrib><title>Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes</title><title>Plant molecular biology</title><description>Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.[PUBLICATION ABSTRACT]</description><subject>Alfalfa</subject><subject>Arabidopsis</subject><subject>chloroplast DNA</subject><subject>Chloroplasts</subject><subject>gene duplication</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>genome</subject><subject>Glycine max</subject><subject>inverted repeats</subject><subject>Legumes</subject><subject>Lotus</subject><subject>Medicago</subject><subject>molecular sequence data</subject><subject>nucleotide sequences</subject><subject>repetitive sequences</subject><subject>Soybeans</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkcFO3DAQhi3USmxpH4ATFofeAjN2HCfHagULEhIHytly3PFukBNv7Sx03x6j9MTJGun_fo2_Yewc4QoB9HVGRJAVgKrathUVnLAVKi0rBaL9wlaAja7qGsUp-5bzC0ChZLNifh3HfaCZuNuFmOI-2DzzLU1xJJ7p74EmRzx6vglHN0zER_uP2-kPd4Wzyc7DK5XZhmOmzN-GecfjvKPEA20PpWJpyt_ZV29Dph__3zP2fHvze31XPTxu7te_HionhZ4rCcoL1fbgO4fCa21r34mGGi2gBtKdV67Hroem7ki00ElERb20KC1p0csz9nPp3adYds-zGYfsKAQ7UTxkI0DUEmpRgpefgi_xkMo_stFNB6rBVpUQLiGXYs6JvNmnYbTpaBDMh3azaDdFu_nQbqAwFwvjbTR2m4Zsnp8EoCzGVVeXk7wDdgx-tA</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Saski, C</creator><creator>Lee, S.B</creator><creator>Daniell, H</creator><creator>Wood, T.C</creator><creator>Tomkins, J</creator><creator>Kim, H.G</creator><creator>Jansen, R.K</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20050901</creationdate><title>Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes</title><author>Saski, C ; Lee, S.B ; Daniell, H ; Wood, T.C ; Tomkins, J ; Kim, H.G ; Jansen, R.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-305f258b0f9c12f77a4f926e672040e79f5cb19b0649e28093115eb3a13ae72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alfalfa</topic><topic>Arabidopsis</topic><topic>chloroplast DNA</topic><topic>Chloroplasts</topic><topic>gene duplication</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>genome</topic><topic>Glycine max</topic><topic>inverted repeats</topic><topic>Legumes</topic><topic>Lotus</topic><topic>Medicago</topic><topic>molecular sequence data</topic><topic>nucleotide sequences</topic><topic>repetitive sequences</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saski, C</creatorcontrib><creatorcontrib>Lee, S.B</creatorcontrib><creatorcontrib>Daniell, H</creatorcontrib><creatorcontrib>Wood, T.C</creatorcontrib><creatorcontrib>Tomkins, J</creatorcontrib><creatorcontrib>Kim, H.G</creatorcontrib><creatorcontrib>Jansen, R.K</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saski, C</au><au>Lee, S.B</au><au>Daniell, H</au><au>Wood, T.C</au><au>Tomkins, J</au><au>Kim, H.G</au><au>Jansen, R.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes</atitle><jtitle>Plant molecular biology</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>59</volume><issue>2</issue><spage>309</spage><epage>322</epage><pages>309-322</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.[PUBLICATION ABSTRACT]</abstract><cop>The Hague</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11103-005-8882-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2005-09, Vol.59 (2), p.309-322 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_20243042 |
source | SpringerNature Journals |
subjects | Alfalfa Arabidopsis chloroplast DNA Chloroplasts gene duplication Genes Genetic engineering genome Glycine max inverted repeats Legumes Lotus Medicago molecular sequence data nucleotide sequences repetitive sequences Soybeans |
title | Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20chloroplast%20genome%20sequence%20of%20Glycine%20max%20and%20comparative%20analyses%20with%20other%20legume%20genomes&rft.jtitle=Plant%20molecular%20biology&rft.au=Saski,%20C&rft.date=2005-09-01&rft.volume=59&rft.issue=2&rft.spage=309&rft.epage=322&rft.pages=309-322&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-005-8882-0&rft_dat=%3Cproquest_cross%3E20243042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=769056185&rft_id=info:pmid/&rfr_iscdi=true |