Gravitational waves from 3D MHD core collapse simulations

We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2008-10, Vol.490 (1), p.231-241
Hauptverfasser: Scheidegger, S., Fischer, T., Whitehouse, S. C., Liebendörfer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 1
container_start_page 231
container_title Astronomy and astrophysics (Berlin)
container_volume 490
creator Scheidegger, S.
Fischer, T.
Whitehouse, S. C.
Liebendörfer, M.
description We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.
doi_str_mv 10.1051/0004-6361:20078577
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20240593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20240593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwApxygVvA_465QUtbUBEHQD1ajmNLgaQp3rTA25PQ0suuVvvN7GoQOif4imBBrjHGPJVMkhuKscqEUgdoQDijKVZcHqLBHjhGJwDv3UhJxgZIT6PdlK1ty2Zpq-TLbjwkITZ1wsbJ02ycuCb6rlSVXYFPoKzX1R8Mp-go2Ar82a4P0dvk_nU0S-fP04fR7Tx1XMg2pXl3VXMauAtKFUVeCBmyoLgtSG4p0y4ElzMSClFkLkhFvXBSZYwXnlLO2BBdbn1Xsflce2hNXYLz3UNL36zBUEw5FroH6RZ0sQGIPphVLGsbfwzBpk_J9CGYPgTzn1Inuti5W3C2CtEuXQl7JcVKEC1ox6VbroTWf-_3Nn4YqZgSJsMLczd5fNEca7Ngv4SNdU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20240593</pqid></control><display><type>article</type><title>Gravitational waves from 3D MHD core collapse simulations</title><source>EDP Sciences</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</creator><creatorcontrib>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</creatorcontrib><description>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20078577</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; gravitational waves ; hydrodynamics ; neutrinos ; stars: neutron ; stars: rotation ; supernovae: general</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-10, Vol.490 (1), p.231-241</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</citedby><cites>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20751952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheidegger, S.</creatorcontrib><creatorcontrib>Fischer, T.</creatorcontrib><creatorcontrib>Whitehouse, S. C.</creatorcontrib><creatorcontrib>Liebendörfer, M.</creatorcontrib><title>Gravitational waves from 3D MHD core collapse simulations</title><title>Astronomy and astrophysics (Berlin)</title><description>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>gravitational waves</subject><subject>hydrodynamics</subject><subject>neutrinos</subject><subject>stars: neutron</subject><subject>stars: rotation</subject><subject>supernovae: general</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwApxygVvA_465QUtbUBEHQD1ajmNLgaQp3rTA25PQ0suuVvvN7GoQOif4imBBrjHGPJVMkhuKscqEUgdoQDijKVZcHqLBHjhGJwDv3UhJxgZIT6PdlK1ty2Zpq-TLbjwkITZ1wsbJ02ycuCb6rlSVXYFPoKzX1R8Mp-go2Ar82a4P0dvk_nU0S-fP04fR7Tx1XMg2pXl3VXMauAtKFUVeCBmyoLgtSG4p0y4ElzMSClFkLkhFvXBSZYwXnlLO2BBdbn1Xsflce2hNXYLz3UNL36zBUEw5FroH6RZ0sQGIPphVLGsbfwzBpk_J9CGYPgTzn1Inuti5W3C2CtEuXQl7JcVKEC1ox6VbroTWf-_3Nn4YqZgSJsMLczd5fNEca7Ngv4SNdU8</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Scheidegger, S.</creator><creator>Fischer, T.</creator><creator>Whitehouse, S. C.</creator><creator>Liebendörfer, M.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081001</creationdate><title>Gravitational waves from 3D MHD core collapse simulations</title><author>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>gravitational waves</topic><topic>hydrodynamics</topic><topic>neutrinos</topic><topic>stars: neutron</topic><topic>stars: rotation</topic><topic>supernovae: general</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheidegger, S.</creatorcontrib><creatorcontrib>Fischer, T.</creatorcontrib><creatorcontrib>Whitehouse, S. C.</creatorcontrib><creatorcontrib>Liebendörfer, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheidegger, S.</au><au>Fischer, T.</au><au>Whitehouse, S. C.</au><au>Liebendörfer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational waves from 3D MHD core collapse simulations</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>490</volume><issue>1</issue><spage>231</spage><epage>241</epage><pages>231-241</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20078577</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2008-10, Vol.490 (1), p.231-241
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_20240593
source EDP Sciences; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
gravitational waves
hydrodynamics
neutrinos
stars: neutron
stars: rotation
supernovae: general
title Gravitational waves from 3D MHD core collapse simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20waves%20from%203D%20MHD%20core%20collapse%20simulations&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Scheidegger,%20S.&rft.date=2008-10-01&rft.volume=490&rft.issue=1&rft.spage=231&rft.epage=241&rft.pages=231-241&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20078577&rft_dat=%3Cproquest_cross%3E20240593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20240593&rft_id=info:pmid/&rfr_iscdi=true