Gravitational waves from 3D MHD core collapse simulations
We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2008-10, Vol.490 (1), p.231-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 1 |
container_start_page | 231 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 490 |
creator | Scheidegger, S. Fischer, T. Whitehouse, S. C. Liebendörfer, M. |
description | We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector. |
doi_str_mv | 10.1051/0004-6361:20078577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20240593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20240593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwApxygVvA_465QUtbUBEHQD1ajmNLgaQp3rTA25PQ0suuVvvN7GoQOif4imBBrjHGPJVMkhuKscqEUgdoQDijKVZcHqLBHjhGJwDv3UhJxgZIT6PdlK1ty2Zpq-TLbjwkITZ1wsbJ02ycuCb6rlSVXYFPoKzX1R8Mp-go2Ar82a4P0dvk_nU0S-fP04fR7Tx1XMg2pXl3VXMauAtKFUVeCBmyoLgtSG4p0y4ElzMSClFkLkhFvXBSZYwXnlLO2BBdbn1Xsflce2hNXYLz3UNL36zBUEw5FroH6RZ0sQGIPphVLGsbfwzBpk_J9CGYPgTzn1Inuti5W3C2CtEuXQl7JcVKEC1ox6VbroTWf-_3Nn4YqZgSJsMLczd5fNEca7Ngv4SNdU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20240593</pqid></control><display><type>article</type><title>Gravitational waves from 3D MHD core collapse simulations</title><source>EDP Sciences</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</creator><creatorcontrib>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</creatorcontrib><description>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20078577</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; gravitational waves ; hydrodynamics ; neutrinos ; stars: neutron ; stars: rotation ; supernovae: general</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-10, Vol.490 (1), p.231-241</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</citedby><cites>FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20751952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheidegger, S.</creatorcontrib><creatorcontrib>Fischer, T.</creatorcontrib><creatorcontrib>Whitehouse, S. C.</creatorcontrib><creatorcontrib>Liebendörfer, M.</creatorcontrib><title>Gravitational waves from 3D MHD core collapse simulations</title><title>Astronomy and astrophysics (Berlin)</title><description>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>gravitational waves</subject><subject>hydrodynamics</subject><subject>neutrinos</subject><subject>stars: neutron</subject><subject>stars: rotation</subject><subject>supernovae: general</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwApxygVvA_465QUtbUBEHQD1ajmNLgaQp3rTA25PQ0suuVvvN7GoQOif4imBBrjHGPJVMkhuKscqEUgdoQDijKVZcHqLBHjhGJwDv3UhJxgZIT6PdlK1ty2Zpq-TLbjwkITZ1wsbJ02ycuCb6rlSVXYFPoKzX1R8Mp-go2Ar82a4P0dvk_nU0S-fP04fR7Tx1XMg2pXl3VXMauAtKFUVeCBmyoLgtSG4p0y4ElzMSClFkLkhFvXBSZYwXnlLO2BBdbn1Xsflce2hNXYLz3UNL36zBUEw5FroH6RZ0sQGIPphVLGsbfwzBpk_J9CGYPgTzn1Inuti5W3C2CtEuXQl7JcVKEC1ox6VbroTWf-_3Nn4YqZgSJsMLczd5fNEca7Ngv4SNdU8</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Scheidegger, S.</creator><creator>Fischer, T.</creator><creator>Whitehouse, S. C.</creator><creator>Liebendörfer, M.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081001</creationdate><title>Gravitational waves from 3D MHD core collapse simulations</title><author>Scheidegger, S. ; Fischer, T. ; Whitehouse, S. C. ; Liebendörfer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2b636942f4cf77ddbd56f8f74ad1ba239cffcb31fd5d8cf672e5c67834de22433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>gravitational waves</topic><topic>hydrodynamics</topic><topic>neutrinos</topic><topic>stars: neutron</topic><topic>stars: rotation</topic><topic>supernovae: general</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheidegger, S.</creatorcontrib><creatorcontrib>Fischer, T.</creatorcontrib><creatorcontrib>Whitehouse, S. C.</creatorcontrib><creatorcontrib>Liebendörfer, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheidegger, S.</au><au>Fischer, T.</au><au>Whitehouse, S. C.</au><au>Liebendörfer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational waves from 3D MHD core collapse simulations</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>490</volume><issue>1</issue><spage>231</spage><epage>241</epage><pages>231-241</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>We present the gravitational wave analyses from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and during the first couple of ten milliseconds afterwards. The simulations are launched from 15 $M_{\odot}$ progenitor models stemming from stellar-evolution calculations. Gravity is implemented by a spherically symmetric effective general relativistic potential. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations, as well as nonaxisymmetric effects. In agreement with recent results, we find only type I gravitational wave signals at core bounce. In the later stage of the simulations, one of our models (s15g) shows nonaxisymmetric gravitational wave emission caused by a low $T/|W|$ dynamical instability, while the other model radiates gravitational waves due to a convective instability in the protoneutron star. The total energy released in gravitational waves within the considered time intervals is $1.52\times10^{-7}~M_{\odot}$ (s15g) and $4.72\times10^{-10}~M_{\odot}$ (s15h). Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable either by the LIGO or Advanced LIGO detector.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20078577</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2008-10, Vol.490 (1), p.231-241 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_miscellaneous_20240593 |
source | EDP Sciences; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX |
subjects | Astronomy Earth, ocean, space Exact sciences and technology gravitational waves hydrodynamics neutrinos stars: neutron stars: rotation supernovae: general |
title | Gravitational waves from 3D MHD core collapse simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20waves%20from%203D%20MHD%20core%20collapse%20simulations&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Scheidegger,%20S.&rft.date=2008-10-01&rft.volume=490&rft.issue=1&rft.spage=231&rft.epage=241&rft.pages=231-241&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20078577&rft_dat=%3Cproquest_cross%3E20240593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20240593&rft_id=info:pmid/&rfr_iscdi=true |