Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions

[Display omitted] The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2018-08, Vol.524, p.93-101
Hauptverfasser: Song, Chunsen, Wu, Shikui, Shen, Xiaoping, Miao, Xuli, Ji, Zhenyuan, Yuan, Aihua, Xu, Keqiang, Liu, Miaomiao, Xie, Xulan, Kong, Lirong, Zhu, Guoxing, Ali Shah, Sayyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue
container_start_page 93
container_title Journal of colloid and interface science
container_volume 524
creator Song, Chunsen
Wu, Shikui
Shen, Xiaoping
Miao, Xuli
Ji, Zhenyuan
Yuan, Aihua
Xu, Keqiang
Liu, Miaomiao
Xie, Xulan
Kong, Lirong
Zhu, Guoxing
Ali Shah, Sayyar
description [Display omitted] The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe3C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe3C@N-C polyhedrons consisting of Fe and Fe3C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn3[Fe(CN)6]2·xH2O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m2 g−1 and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe3C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm−2 and a small Tafel slope of 59.6 mV decade-1. Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application.
doi_str_mv 10.1016/j.jcis.2018.04.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2024015034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979718303989</els_id><sourcerecordid>2024015034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-669da3db913061624535adeab5e05b42b26bad98280e59b0a4dae470ad82ec343</originalsourceid><addsrcrecordid>eNp9UcGO0zAQjVYgbVn4AU4-ckl27DhpI3EAVRRWWuDCnq2JPdm6pHEZJ13yUfuPuC3nPc1o5r0Zvfey7L2EQoKsb3fFzvpYKJCrAnQBqr7KFhKaKl9KKF9lCwAl82bZLK-zNzHuAKSsqmaRPX-nEfs88CMO3oqOcU9PgX8LR-yP5MSGbjdUrj_9yF04kMstchsGcQgcpii2nhjZbr3FPs36eUuOwxAFRtH6bhrs6MOQdtSTHTlYTN_mOEbRBRbbOYEfaRB0DP10QgocnAh_5zTMmdx0pgsmPDfxbfa6wz7Su__1JnvYfPm1_pbf__x6t_58n1td1mNe143D0rWNLKGWtdJVWaEjbCuCqtWqVXWLrlmpFVDVtIDaIekloFspsqUub7IPl7sHDn8miqPZ-2ip73GgJNsoUBpkBWeoukAthxiZOnNgv0eejQRzysbszCkbc8rGgDYpm0T6eCFREnFMHppoPQ2WnOfkk3HBv0T_B_CmnYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024015034</pqid></control><display><type>article</type><title>Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Song, Chunsen ; Wu, Shikui ; Shen, Xiaoping ; Miao, Xuli ; Ji, Zhenyuan ; Yuan, Aihua ; Xu, Keqiang ; Liu, Miaomiao ; Xie, Xulan ; Kong, Lirong ; Zhu, Guoxing ; Ali Shah, Sayyar</creator><creatorcontrib>Song, Chunsen ; Wu, Shikui ; Shen, Xiaoping ; Miao, Xuli ; Ji, Zhenyuan ; Yuan, Aihua ; Xu, Keqiang ; Liu, Miaomiao ; Xie, Xulan ; Kong, Lirong ; Zhu, Guoxing ; Ali Shah, Sayyar</creatorcontrib><description>[Display omitted] The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe3C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe3C@N-C polyhedrons consisting of Fe and Fe3C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn3[Fe(CN)6]2·xH2O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m2 g−1 and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe3C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm−2 and a small Tafel slope of 59.6 mV decade-1. Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2018.04.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Fe/Fe3C@N-C ; Hydrogen evolution reaction ; Metal-organic framework ; Oxygen reduction reaction ; Porous hierarchical polyhedrons</subject><ispartof>Journal of colloid and interface science, 2018-08, Vol.524, p.93-101</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-669da3db913061624535adeab5e05b42b26bad98280e59b0a4dae470ad82ec343</citedby><cites>FETCH-LOGICAL-c436t-669da3db913061624535adeab5e05b42b26bad98280e59b0a4dae470ad82ec343</cites><orcidid>0000-0003-0366-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2018.04.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Song, Chunsen</creatorcontrib><creatorcontrib>Wu, Shikui</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Miao, Xuli</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Liu, Miaomiao</creatorcontrib><creatorcontrib>Xie, Xulan</creatorcontrib><creatorcontrib>Kong, Lirong</creatorcontrib><creatorcontrib>Zhu, Guoxing</creatorcontrib><creatorcontrib>Ali Shah, Sayyar</creatorcontrib><title>Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions</title><title>Journal of colloid and interface science</title><description>[Display omitted] The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe3C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe3C@N-C polyhedrons consisting of Fe and Fe3C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn3[Fe(CN)6]2·xH2O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m2 g−1 and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe3C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm−2 and a small Tafel slope of 59.6 mV decade-1. Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application.</description><subject>Fe/Fe3C@N-C</subject><subject>Hydrogen evolution reaction</subject><subject>Metal-organic framework</subject><subject>Oxygen reduction reaction</subject><subject>Porous hierarchical polyhedrons</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UcGO0zAQjVYgbVn4AU4-ckl27DhpI3EAVRRWWuDCnq2JPdm6pHEZJ13yUfuPuC3nPc1o5r0Zvfey7L2EQoKsb3fFzvpYKJCrAnQBqr7KFhKaKl9KKF9lCwAl82bZLK-zNzHuAKSsqmaRPX-nEfs88CMO3oqOcU9PgX8LR-yP5MSGbjdUrj_9yF04kMstchsGcQgcpii2nhjZbr3FPs36eUuOwxAFRtH6bhrs6MOQdtSTHTlYTN_mOEbRBRbbOYEfaRB0DP10QgocnAh_5zTMmdx0pgsmPDfxbfa6wz7Su__1JnvYfPm1_pbf__x6t_58n1td1mNe143D0rWNLKGWtdJVWaEjbCuCqtWqVXWLrlmpFVDVtIDaIekloFspsqUub7IPl7sHDn8miqPZ-2ip73GgJNsoUBpkBWeoukAthxiZOnNgv0eejQRzysbszCkbc8rGgDYpm0T6eCFREnFMHppoPQ2WnOfkk3HBv0T_B_CmnYA</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Song, Chunsen</creator><creator>Wu, Shikui</creator><creator>Shen, Xiaoping</creator><creator>Miao, Xuli</creator><creator>Ji, Zhenyuan</creator><creator>Yuan, Aihua</creator><creator>Xu, Keqiang</creator><creator>Liu, Miaomiao</creator><creator>Xie, Xulan</creator><creator>Kong, Lirong</creator><creator>Zhu, Guoxing</creator><creator>Ali Shah, Sayyar</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></search><sort><creationdate>20180815</creationdate><title>Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions</title><author>Song, Chunsen ; Wu, Shikui ; Shen, Xiaoping ; Miao, Xuli ; Ji, Zhenyuan ; Yuan, Aihua ; Xu, Keqiang ; Liu, Miaomiao ; Xie, Xulan ; Kong, Lirong ; Zhu, Guoxing ; Ali Shah, Sayyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-669da3db913061624535adeab5e05b42b26bad98280e59b0a4dae470ad82ec343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fe/Fe3C@N-C</topic><topic>Hydrogen evolution reaction</topic><topic>Metal-organic framework</topic><topic>Oxygen reduction reaction</topic><topic>Porous hierarchical polyhedrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chunsen</creatorcontrib><creatorcontrib>Wu, Shikui</creatorcontrib><creatorcontrib>Shen, Xiaoping</creatorcontrib><creatorcontrib>Miao, Xuli</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Xu, Keqiang</creatorcontrib><creatorcontrib>Liu, Miaomiao</creatorcontrib><creatorcontrib>Xie, Xulan</creatorcontrib><creatorcontrib>Kong, Lirong</creatorcontrib><creatorcontrib>Zhu, Guoxing</creatorcontrib><creatorcontrib>Ali Shah, Sayyar</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chunsen</au><au>Wu, Shikui</au><au>Shen, Xiaoping</au><au>Miao, Xuli</au><au>Ji, Zhenyuan</au><au>Yuan, Aihua</au><au>Xu, Keqiang</au><au>Liu, Miaomiao</au><au>Xie, Xulan</au><au>Kong, Lirong</au><au>Zhu, Guoxing</au><au>Ali Shah, Sayyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>524</volume><spage>93</spage><epage>101</epage><pages>93-101</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The development of simple and cost-effective synthesis methods for electrocatalysts of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is critical to renewable energy technologies. Herein, we report an interesting bifunctional HER and ORR electrocatalyst of Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons (Fe/Fe3C@N-C) by a simple metal-organic framework precursor route. The Fe/Fe3C@N-C polyhedrons consisting of Fe and Fe3C nanocrystals enveloped by N-doped carbon shells and accompanying with some carbon nanotubes on the surface were prepared by thermal annealing of Zn3[Fe(CN)6]2·xH2O polyhedral particles in nitrogen atmosphere. This material exhibits a large specific surface area of 182.5 m2 g−1 and excellent ferromagnetic property. Electrochemical tests indicate that the Fe/Fe3C@N-C hybrid has apparent HER activity with a relatively low overpotential of 236 mV at the current density of 10 mA cm−2 and a small Tafel slope of 59.6 mV decade-1. Meanwhile, this material exhibits excellent catalytic activity toward ORR with an onset potential (0.936 V vs. RHE) and half-wave potential (0.804 V vs. RHE) in 0.1 M KOH, which is comparable to commercial 20 wt% Pt/C (0.975 V and 0.820 V), and shows even better stability than the Pt/C. This work provides a new insight to developing multi-functional materials for renewable energy application.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2018.04.026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0366-6433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2018-08, Vol.524, p.93-101
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2024015034
source Access via ScienceDirect (Elsevier)
subjects Fe/Fe3C@N-C
Hydrogen evolution reaction
Metal-organic framework
Oxygen reduction reaction
Porous hierarchical polyhedrons
title Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-organic%20framework%20derived%20Fe/Fe3C@N-doped-carbon%20porous%20hierarchical%20polyhedrons%20as%20bifunctional%20electrocatalysts%20for%20hydrogen%20evolution%20and%20oxygen-reduction%20reactions&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Song,%20Chunsen&rft.date=2018-08-15&rft.volume=524&rft.spage=93&rft.epage=101&rft.pages=93-101&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2018.04.026&rft_dat=%3Cproquest_cross%3E2024015034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024015034&rft_id=info:pmid/&rft_els_id=S0021979718303989&rfr_iscdi=true