Real ribozymes suggest a relaxed error threshold

The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2005-09, Vol.37 (9), p.1008-1011
Hauptverfasser: Kun, Ádám, Szathmáry, Eörs, Santos, Mauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1011
container_issue 9
container_start_page 1008
container_title Nature genetics
container_volume 37
creator Kun, Ádám
Szathmáry, Eörs
Santos, Mauro
description The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.
doi_str_mv 10.1038/ng1621
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20238911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183410986</galeid><sourcerecordid>A183410986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</originalsourceid><addsrcrecordid>eNqN0V9r1TAUAPAiipvb_AQiRVHZQ2dOmibp4xj-GQwG0_kacpOTrqNttqSFzU9vSouXqz5IHhJyfjnJycmyl0BOgJTy49AAp_Ak24eK8QIEyKdpTTgUjJR8L3sR4y0hwBiRz7M94EAFq-h-Rq5Qd3loN_7nY48xj1PTYBxznQfs9APaHEPwIR9vAsYb39nD7JnTXcSjdT7Irj9_-n72tbi4_HJ-dnpRmKoqx4K7TeU4crtBKijW2iEgGIvWahSSQFUKTYSoiRQSmeOuZHVFrHSGca15eZC9X_LeBX8_pSepvo0Gu04P6KeoKKGlrAESfPMHvPVTGNLbFKWUCynljN4uqNEdqnZwfgzazBnVKciSAanlfOfJP1QaFvvW-AFdm_Z3DhzvHEhmxIex0VOM6vzb1f_byx-7di3eBB9jQKfuQtvr8KiAqLnfaul3gq_X4qdNj3bL1gYn8G4FOhrduaAH08atE0RSwmf3YXExhYYGw_YX_7ry1SIHPU4Bf6daw78Au9TEHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222678881</pqid></control><display><type>article</type><title>Real ribozymes suggest a relaxed error threshold</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</creator><creatorcontrib>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</creatorcontrib><description>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng1621</identifier><identifier>PMID: 16127452</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Base Pairing ; Base Sequence ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Catalytic RNA ; DNA Replication - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Gene mutations ; Genetics of eukaryotes. Biological and molecular evolution ; Genome ; Genotype ; Human Genetics ; Identification and classification ; letter ; Molecular Sequence Data ; Mutation ; Physiological aspects ; RNA, Catalytic - chemistry ; RNA, Catalytic - genetics</subject><ispartof>Nature genetics, 2005-09, Vol.37 (9), p.1008-1011</ispartof><rights>Springer Nature America, Inc. 2005</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</citedby><cites>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng1621$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng1621$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17082062$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16127452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kun, Ádám</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><title>Real ribozymes suggest a relaxed error threshold</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Catalytic RNA</subject><subject>DNA Replication - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome</subject><subject>Genotype</subject><subject>Human Genetics</subject><subject>Identification and classification</subject><subject>letter</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Physiological aspects</subject><subject>RNA, Catalytic - chemistry</subject><subject>RNA, Catalytic - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0V9r1TAUAPAiipvb_AQiRVHZQ2dOmibp4xj-GQwG0_kacpOTrqNttqSFzU9vSouXqz5IHhJyfjnJycmyl0BOgJTy49AAp_Ak24eK8QIEyKdpTTgUjJR8L3sR4y0hwBiRz7M94EAFq-h-Rq5Qd3loN_7nY48xj1PTYBxznQfs9APaHEPwIR9vAsYb39nD7JnTXcSjdT7Irj9_-n72tbi4_HJ-dnpRmKoqx4K7TeU4crtBKijW2iEgGIvWahSSQFUKTYSoiRQSmeOuZHVFrHSGca15eZC9X_LeBX8_pSepvo0Gu04P6KeoKKGlrAESfPMHvPVTGNLbFKWUCynljN4uqNEdqnZwfgzazBnVKciSAanlfOfJP1QaFvvW-AFdm_Z3DhzvHEhmxIex0VOM6vzb1f_byx-7di3eBB9jQKfuQtvr8KiAqLnfaul3gq_X4qdNj3bL1gYn8G4FOhrduaAH08atE0RSwmf3YXExhYYGw_YX_7ry1SIHPU4Bf6daw78Au9TEHw</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Kun, Ádám</creator><creator>Szathmáry, Eörs</creator><creator>Santos, Mauro</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope></search><sort><creationdate>20050901</creationdate><title>Real ribozymes suggest a relaxed error threshold</title><author>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Catalytic RNA</topic><topic>DNA Replication - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome</topic><topic>Genotype</topic><topic>Human Genetics</topic><topic>Identification and classification</topic><topic>letter</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Physiological aspects</topic><topic>RNA, Catalytic - chemistry</topic><topic>RNA, Catalytic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Ádám</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Ádám</au><au>Szathmáry, Eörs</au><au>Santos, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real ribozymes suggest a relaxed error threshold</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>37</volume><issue>9</issue><spage>1008</spage><epage>1011</epage><pages>1008-1011</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16127452</pmid><doi>10.1038/ng1621</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2005-09, Vol.37 (9), p.1008-1011
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_20238911
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Agriculture
Animal Genetics and Genomics
Base Pairing
Base Sequence
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Cancer Research
Catalytic RNA
DNA Replication - genetics
Fundamental and applied biological sciences. Psychology
Gene Function
Gene mutations
Genetics of eukaryotes. Biological and molecular evolution
Genome
Genotype
Human Genetics
Identification and classification
letter
Molecular Sequence Data
Mutation
Physiological aspects
RNA, Catalytic - chemistry
RNA, Catalytic - genetics
title Real ribozymes suggest a relaxed error threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20ribozymes%20suggest%20a%20relaxed%20error%20threshold&rft.jtitle=Nature%20genetics&rft.au=Kun,%20%C3%81d%C3%A1m&rft.date=2005-09-01&rft.volume=37&rft.issue=9&rft.spage=1008&rft.epage=1011&rft.pages=1008-1011&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng1621&rft_dat=%3Cgale_proqu%3EA183410986%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222678881&rft_id=info:pmid/16127452&rft_galeid=A183410986&rfr_iscdi=true