Real ribozymes suggest a relaxed error threshold
The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2005-09, Vol.37 (9), p.1008-1011 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 9 |
container_start_page | 1008 |
container_title | Nature genetics |
container_volume | 37 |
creator | Kun, Ádám Szathmáry, Eörs Santos, Mauro |
description | The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation. |
doi_str_mv | 10.1038/ng1621 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20238911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183410986</galeid><sourcerecordid>A183410986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</originalsourceid><addsrcrecordid>eNqN0V9r1TAUAPAiipvb_AQiRVHZQ2dOmibp4xj-GQwG0_kacpOTrqNttqSFzU9vSouXqz5IHhJyfjnJycmyl0BOgJTy49AAp_Ak24eK8QIEyKdpTTgUjJR8L3sR4y0hwBiRz7M94EAFq-h-Rq5Qd3loN_7nY48xj1PTYBxznQfs9APaHEPwIR9vAsYb39nD7JnTXcSjdT7Irj9_-n72tbi4_HJ-dnpRmKoqx4K7TeU4crtBKijW2iEgGIvWahSSQFUKTYSoiRQSmeOuZHVFrHSGca15eZC9X_LeBX8_pSepvo0Gu04P6KeoKKGlrAESfPMHvPVTGNLbFKWUCynljN4uqNEdqnZwfgzazBnVKciSAanlfOfJP1QaFvvW-AFdm_Z3DhzvHEhmxIex0VOM6vzb1f_byx-7di3eBB9jQKfuQtvr8KiAqLnfaul3gq_X4qdNj3bL1gYn8G4FOhrduaAH08atE0RSwmf3YXExhYYGw_YX_7ry1SIHPU4Bf6daw78Au9TEHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222678881</pqid></control><display><type>article</type><title>Real ribozymes suggest a relaxed error threshold</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</creator><creatorcontrib>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</creatorcontrib><description>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng1621</identifier><identifier>PMID: 16127452</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Base Pairing ; Base Sequence ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Catalytic RNA ; DNA Replication - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Function ; Gene mutations ; Genetics of eukaryotes. Biological and molecular evolution ; Genome ; Genotype ; Human Genetics ; Identification and classification ; letter ; Molecular Sequence Data ; Mutation ; Physiological aspects ; RNA, Catalytic - chemistry ; RNA, Catalytic - genetics</subject><ispartof>Nature genetics, 2005-09, Vol.37 (9), p.1008-1011</ispartof><rights>Springer Nature America, Inc. 2005</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</citedby><cites>FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng1621$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng1621$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17082062$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16127452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kun, Ádám</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><title>Real ribozymes suggest a relaxed error threshold</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Catalytic RNA</subject><subject>DNA Replication - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome</subject><subject>Genotype</subject><subject>Human Genetics</subject><subject>Identification and classification</subject><subject>letter</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Physiological aspects</subject><subject>RNA, Catalytic - chemistry</subject><subject>RNA, Catalytic - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0V9r1TAUAPAiipvb_AQiRVHZQ2dOmibp4xj-GQwG0_kacpOTrqNttqSFzU9vSouXqz5IHhJyfjnJycmyl0BOgJTy49AAp_Ak24eK8QIEyKdpTTgUjJR8L3sR4y0hwBiRz7M94EAFq-h-Rq5Qd3loN_7nY48xj1PTYBxznQfs9APaHEPwIR9vAsYb39nD7JnTXcSjdT7Irj9_-n72tbi4_HJ-dnpRmKoqx4K7TeU4crtBKijW2iEgGIvWahSSQFUKTYSoiRQSmeOuZHVFrHSGca15eZC9X_LeBX8_pSepvo0Gu04P6KeoKKGlrAESfPMHvPVTGNLbFKWUCynljN4uqNEdqnZwfgzazBnVKciSAanlfOfJP1QaFvvW-AFdm_Z3DhzvHEhmxIex0VOM6vzb1f_byx-7di3eBB9jQKfuQtvr8KiAqLnfaul3gq_X4qdNj3bL1gYn8G4FOhrduaAH08atE0RSwmf3YXExhYYGw_YX_7ry1SIHPU4Bf6daw78Au9TEHw</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Kun, Ádám</creator><creator>Szathmáry, Eörs</creator><creator>Santos, Mauro</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope></search><sort><creationdate>20050901</creationdate><title>Real ribozymes suggest a relaxed error threshold</title><author>Kun, Ádám ; Szathmáry, Eörs ; Santos, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-6fb5f6e6dbe272e9afe1e1cdeddae7801537a07790878e4f6f34950d8fc46aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Catalytic RNA</topic><topic>DNA Replication - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome</topic><topic>Genotype</topic><topic>Human Genetics</topic><topic>Identification and classification</topic><topic>letter</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Physiological aspects</topic><topic>RNA, Catalytic - chemistry</topic><topic>RNA, Catalytic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Ádám</creatorcontrib><creatorcontrib>Szathmáry, Eörs</creatorcontrib><creatorcontrib>Santos, Mauro</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Ádám</au><au>Szathmáry, Eörs</au><au>Santos, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real ribozymes suggest a relaxed error threshold</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>37</volume><issue>9</issue><spage>1008</spage><epage>1011</epage><pages>1008-1011</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>The error threshold for replication, the critical copying fidelity below which the fittest genotype deterministically disappears, limits the length of the genome that can be maintained by selection. Primordial replication must have been error-prone, and so early replicators are thought to have been necessarily short. The error threshold also depends on the fitness landscape. In an RNA world, many neutral and compensatory mutations can raise the threshold, below which the functional phenotype, rather than a particular sequence, is still present. Here we show, on the basis of comparative analysis of two extensively mutagenized ribozymes, that with a copying fidelity of 0.999 per digit per replication the phenotypic error threshold rises well above 7,000 nucleotides, which permits the selective maintenance of a functionally rich riboorganism with a genome of more than 100 different genes, the size of a tRNA. This requires an order of magnitude of improvement in the accuracy of in vitro-generated polymerase ribozymes. Incidentally, this genome size coincides with that estimated for a minimal cell achieved by top-down analysis, omitting the genes dealing with translation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16127452</pmid><doi>10.1038/ng1621</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2005-09, Vol.37 (9), p.1008-1011 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_20238911 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Animal Genetics and Genomics Base Pairing Base Sequence Biological and medical sciences Biomedical and Life Sciences Biomedicine Cancer Research Catalytic RNA DNA Replication - genetics Fundamental and applied biological sciences. Psychology Gene Function Gene mutations Genetics of eukaryotes. Biological and molecular evolution Genome Genotype Human Genetics Identification and classification letter Molecular Sequence Data Mutation Physiological aspects RNA, Catalytic - chemistry RNA, Catalytic - genetics |
title | Real ribozymes suggest a relaxed error threshold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20ribozymes%20suggest%20a%20relaxed%20error%20threshold&rft.jtitle=Nature%20genetics&rft.au=Kun,%20%C3%81d%C3%A1m&rft.date=2005-09-01&rft.volume=37&rft.issue=9&rft.spage=1008&rft.epage=1011&rft.pages=1008-1011&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/ng1621&rft_dat=%3Cgale_proqu%3EA183410986%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222678881&rft_id=info:pmid/16127452&rft_galeid=A183410986&rfr_iscdi=true |