Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes

Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences 1 , 2 . Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-05, Vol.557 (7705), p.446-451
Hauptverfasser: Verma, Rati, Reichermeier, Kurt M., Burroughs, A. Maxwell, Oania, Robert S., Reitsma, Justin M., Aravind, L., Deshaies, Raymond J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 7705
container_start_page 446
container_title Nature (London)
container_volume 557
creator Verma, Rati
Reichermeier, Kurt M.
Burroughs, A. Maxwell
Oania, Robert S.
Reitsma, Justin M.
Aravind, L.
Deshaies, Raymond J.
description Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences 1 , 2 . Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation 3 – 9 . Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice 10 – 14 . Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade. The Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase that cooperates with the ribosome quality control complex to catalyse the removal of nascent polypeptides from stalled ribosomes.
doi_str_mv 10.1038/s41586-018-0022-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2023728146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572639103</galeid><sourcerecordid>A572639103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-c9b395774e702abbca1a0cf9cf19312df61c0afbaae6c2d1c00e37213ba439d13</originalsourceid><addsrcrecordid>eNp1kk9v1DAQxS0EokvhA3BBFlzoIcV_Eic5rioKFVUrFeiBi-U4k20qx07tRGK_PbPalrLVIh9sz_zm6Wn0CHnL2TFnsvqUcl5UKmO8yhgTIiuekQXPS5XlqiqfkwUWsVNJdUBepXTLGCt4mb8kB6JWUkguFuT6ekicGt_S5cW3X6ecjjBOfbt22XR1saQ36zYGZxIkGsEBPqg3yYKfqL0xvU-0i2GgaTLOQUtj34QUBkivyYvOuARv7u9D8vP084-Tr9n55Zezk-V5Zgspi8zWjayLssyhZMI0jTXcMNvVtuM12ms7xS0zXWMMKCta_DCQpeCyMbmsWy4Pycet7hjD3Qxp0kOP9pwzHsKctGAC-YrnCtEPT9DbMEeP7pAqavSjquqRWhkHuvddmKKxG1G9LEqhZI2bRyrbQ63AQzQueOh6LO_w7_fwduzv9L_Q8R4ITwtDb_eqHu0MIDPB72ll5pT02ferXZZvWRtDShE6PcZ-MHGtOdObMOltmDSGSW_CpAuceXe_sbkZoP078ZAeBMQWSNjyK4iPK_2_6h_yY88Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059533688</pqid></control><display><type>article</type><title>Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Verma, Rati ; Reichermeier, Kurt M. ; Burroughs, A. Maxwell ; Oania, Robert S. ; Reitsma, Justin M. ; Aravind, L. ; Deshaies, Raymond J.</creator><creatorcontrib>Verma, Rati ; Reichermeier, Kurt M. ; Burroughs, A. Maxwell ; Oania, Robert S. ; Reitsma, Justin M. ; Aravind, L. ; Deshaies, Raymond J.</creatorcontrib><description>Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences 1 , 2 . Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation 3 – 9 . Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice 10 – 14 . Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade. The Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase that cooperates with the ribosome quality control complex to catalyse the removal of nascent polypeptides from stalled ribosomes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0022-5</identifier><identifier>PMID: 29632312</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2410 ; 631/337/574/1789 ; 631/80/474/1768 ; 82/1 ; 82/16 ; 82/29 ; 82/58 ; 82/80 ; 82/83 ; Adenosine triphosphatase ; ATPases ; Biodegradation ; Biopolymers ; Catalysis ; Chains ; Crystal structure ; Degradation ; Glutamine ; Guanosine triphosphatases ; Homology ; Humanities and Social Sciences ; Hydrolase ; Hydrolases ; Intelligence gathering ; Investigations ; Letter ; Ligases ; Messenger RNA ; Methods ; multidisciplinary ; Mutation ; Neurodegeneration ; Peptidyl-tRNA hydrolase ; Physiological aspects ; Polypeptides ; Proteasome 26S ; Protein interaction ; Proteins ; Quality control ; Ribosomes ; RNA ; RNA sequencing ; Science ; Science (multidisciplinary) ; Structural members ; Transfer RNA ; tRNA ; Ubiquitin ; Ubiquitin-protein ligase ; Yeast ; Yeasts</subject><ispartof>Nature (London), 2018-05, Vol.557 (7705), p.446-451</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 17, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-c9b395774e702abbca1a0cf9cf19312df61c0afbaae6c2d1c00e37213ba439d13</citedby><cites>FETCH-LOGICAL-c5335-c9b395774e702abbca1a0cf9cf19312df61c0afbaae6c2d1c00e37213ba439d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0022-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0022-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29632312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Rati</creatorcontrib><creatorcontrib>Reichermeier, Kurt M.</creatorcontrib><creatorcontrib>Burroughs, A. Maxwell</creatorcontrib><creatorcontrib>Oania, Robert S.</creatorcontrib><creatorcontrib>Reitsma, Justin M.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Deshaies, Raymond J.</creatorcontrib><title>Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences 1 , 2 . Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation 3 – 9 . Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice 10 – 14 . Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade. The Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase that cooperates with the ribosome quality control complex to catalyse the removal of nascent polypeptides from stalled ribosomes.</description><subject>631/114/2410</subject><subject>631/337/574/1789</subject><subject>631/80/474/1768</subject><subject>82/1</subject><subject>82/16</subject><subject>82/29</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Adenosine triphosphatase</subject><subject>ATPases</subject><subject>Biodegradation</subject><subject>Biopolymers</subject><subject>Catalysis</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Degradation</subject><subject>Glutamine</subject><subject>Guanosine triphosphatases</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolase</subject><subject>Hydrolases</subject><subject>Intelligence gathering</subject><subject>Investigations</subject><subject>Letter</subject><subject>Ligases</subject><subject>Messenger RNA</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Peptidyl-tRNA hydrolase</subject><subject>Physiological aspects</subject><subject>Polypeptides</subject><subject>Proteasome 26S</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structural members</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk9v1DAQxS0EokvhA3BBFlzoIcV_Eic5rioKFVUrFeiBi-U4k20qx07tRGK_PbPalrLVIh9sz_zm6Wn0CHnL2TFnsvqUcl5UKmO8yhgTIiuekQXPS5XlqiqfkwUWsVNJdUBepXTLGCt4mb8kB6JWUkguFuT6ekicGt_S5cW3X6ecjjBOfbt22XR1saQ36zYGZxIkGsEBPqg3yYKfqL0xvU-0i2GgaTLOQUtj34QUBkivyYvOuARv7u9D8vP084-Tr9n55Zezk-V5Zgspi8zWjayLssyhZMI0jTXcMNvVtuM12ms7xS0zXWMMKCta_DCQpeCyMbmsWy4Pycet7hjD3Qxp0kOP9pwzHsKctGAC-YrnCtEPT9DbMEeP7pAqavSjquqRWhkHuvddmKKxG1G9LEqhZI2bRyrbQ63AQzQueOh6LO_w7_fwduzv9L_Q8R4ITwtDb_eqHu0MIDPB72ll5pT02ferXZZvWRtDShE6PcZ-MHGtOdObMOltmDSGSW_CpAuceXe_sbkZoP078ZAeBMQWSNjyK4iPK_2_6h_yY88Y</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Verma, Rati</creator><creator>Reichermeier, Kurt M.</creator><creator>Burroughs, A. Maxwell</creator><creator>Oania, Robert S.</creator><creator>Reitsma, Justin M.</creator><creator>Aravind, L.</creator><creator>Deshaies, Raymond J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes</title><author>Verma, Rati ; Reichermeier, Kurt M. ; Burroughs, A. Maxwell ; Oania, Robert S. ; Reitsma, Justin M. ; Aravind, L. ; Deshaies, Raymond J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-c9b395774e702abbca1a0cf9cf19312df61c0afbaae6c2d1c00e37213ba439d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114/2410</topic><topic>631/337/574/1789</topic><topic>631/80/474/1768</topic><topic>82/1</topic><topic>82/16</topic><topic>82/29</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Adenosine triphosphatase</topic><topic>ATPases</topic><topic>Biodegradation</topic><topic>Biopolymers</topic><topic>Catalysis</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Degradation</topic><topic>Glutamine</topic><topic>Guanosine triphosphatases</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolase</topic><topic>Hydrolases</topic><topic>Intelligence gathering</topic><topic>Investigations</topic><topic>Letter</topic><topic>Ligases</topic><topic>Messenger RNA</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Peptidyl-tRNA hydrolase</topic><topic>Physiological aspects</topic><topic>Polypeptides</topic><topic>Proteasome 26S</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structural members</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Rati</creatorcontrib><creatorcontrib>Reichermeier, Kurt M.</creatorcontrib><creatorcontrib>Burroughs, A. Maxwell</creatorcontrib><creatorcontrib>Oania, Robert S.</creatorcontrib><creatorcontrib>Reitsma, Justin M.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Deshaies, Raymond J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Rati</au><au>Reichermeier, Kurt M.</au><au>Burroughs, A. Maxwell</au><au>Oania, Robert S.</au><au>Reitsma, Justin M.</au><au>Aravind, L.</au><au>Deshaies, Raymond J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>557</volume><issue>7705</issue><spage>446</spage><epage>451</epage><pages>446-451</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences 1 , 2 . Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation 3 – 9 . Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice 10 – 14 . Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade. The Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase that cooperates with the ribosome quality control complex to catalyse the removal of nascent polypeptides from stalled ribosomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29632312</pmid><doi>10.1038/s41586-018-0022-5</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-05, Vol.557 (7705), p.446-451
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2023728146
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114/2410
631/337/574/1789
631/80/474/1768
82/1
82/16
82/29
82/58
82/80
82/83
Adenosine triphosphatase
ATPases
Biodegradation
Biopolymers
Catalysis
Chains
Crystal structure
Degradation
Glutamine
Guanosine triphosphatases
Homology
Humanities and Social Sciences
Hydrolase
Hydrolases
Intelligence gathering
Investigations
Letter
Ligases
Messenger RNA
Methods
multidisciplinary
Mutation
Neurodegeneration
Peptidyl-tRNA hydrolase
Physiological aspects
Polypeptides
Proteasome 26S
Protein interaction
Proteins
Quality control
Ribosomes
RNA
RNA sequencing
Science
Science (multidisciplinary)
Structural members
Transfer RNA
tRNA
Ubiquitin
Ubiquitin-protein ligase
Yeast
Yeasts
title Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vms1%20and%20ANKZF1%20peptidyl-tRNA%20hydrolases%20release%20nascent%20chains%20from%20stalled%20ribosomes&rft.jtitle=Nature%20(London)&rft.au=Verma,%20Rati&rft.date=2018-05-01&rft.volume=557&rft.issue=7705&rft.spage=446&rft.epage=451&rft.pages=446-451&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0022-5&rft_dat=%3Cgale_proqu%3EA572639103%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059533688&rft_id=info:pmid/29632312&rft_galeid=A572639103&rfr_iscdi=true