Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure

Solar cells containing a polycrystalline Cu­(In,Ga)­Se2 absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-05, Vol.10 (17), p.14759-14766
Hauptverfasser: Raghuwanshi, Mohit, Thöner, Bo, Soni, Purvesh, Wuttig, Matthias, Wuerz, Roland, Cojocaru-Mirédin, Oana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14766
container_issue 17
container_start_page 14759
container_title ACS applied materials & interfaces
container_volume 10
creator Raghuwanshi, Mohit
Thöner, Bo
Soni, Purvesh
Wuttig, Matthias
Wuerz, Roland
Cojocaru-Mirédin, Oana
description Solar cells containing a polycrystalline Cu­(In,Ga)­Se2 absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell and thus cannot explain the registered record efficiency. Therefore, in the present work, we resolve this conundrum by performing correlative electron beam-induced current–electron backscatter diffraction investigations on more than 700 grain boundaries and demonstrating that 58% of the grain boundaries exhibit an enhanced carrier collection compared to the grain interior. Enhanced carrier collection thus indicates that GBs are beneficial for the device performance. Moreover, 27% of the grain boundaries are neutral and 15% are recombination-active. Correlation with microstructure shows that most of the ∑3 GBs are neutral, whereas the random high-angle grain boundaries are either beneficial or detrimental. Enhanced carrier collection observed for a big fraction of high-angle grain boundaries supports the “type-inversion” model and hence the downward band bending at GBs. The decrease in current collection observed at one of the high-angle grain boundaries is explained by Cu being enriched at this GB and hence by the upward shift of the valence band maximum.
doi_str_mv 10.1021/acsami.8b02328
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2023725558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023725558</sourcerecordid><originalsourceid>FETCH-LOGICAL-a138t-2a2facadb255833b02a0deaed4e26e1a5ba80abf68105c20eac9eef393325de33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzzlWcWs-NjX1pkuthYoH9Rxms7M0ZZtosqt_32jF07wMDy8zDyHnnE05E_wabIKdm-qaCSn0ARnxeVkWWihx-J_L8picpLRlbCYFUyPiFp-uQW-RhpYu_AZybGgFMTqMtApdh7Z3wVPnaTVMVv5qCRcvKOgyQl7dh8E3kNl0m-EYsYNf-sv1G_rkbAypj4Pth4in5KiFLuHZ3xyTt4fFa_VYrJ-Xq-puXQCXui8EiBYsNLVQSkuZnwHWIGBTopghB1WDZlC3M82ZsoIh2DliK-dSCtWglGMy2fe-x_AxYOrNziWLXQcew5CMyHpucnluH5PLPZrVmW0Yos-HGc7Mj0-z92n-fMpvFHhq6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023725558</pqid></control><display><type>article</type><title>Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure</title><source>American Chemical Society Journals</source><creator>Raghuwanshi, Mohit ; Thöner, Bo ; Soni, Purvesh ; Wuttig, Matthias ; Wuerz, Roland ; Cojocaru-Mirédin, Oana</creator><creatorcontrib>Raghuwanshi, Mohit ; Thöner, Bo ; Soni, Purvesh ; Wuttig, Matthias ; Wuerz, Roland ; Cojocaru-Mirédin, Oana</creatorcontrib><description>Solar cells containing a polycrystalline Cu­(In,Ga)­Se2 absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell and thus cannot explain the registered record efficiency. Therefore, in the present work, we resolve this conundrum by performing correlative electron beam-induced current–electron backscatter diffraction investigations on more than 700 grain boundaries and demonstrating that 58% of the grain boundaries exhibit an enhanced carrier collection compared to the grain interior. Enhanced carrier collection thus indicates that GBs are beneficial for the device performance. Moreover, 27% of the grain boundaries are neutral and 15% are recombination-active. Correlation with microstructure shows that most of the ∑3 GBs are neutral, whereas the random high-angle grain boundaries are either beneficial or detrimental. Enhanced carrier collection observed for a big fraction of high-angle grain boundaries supports the “type-inversion” model and hence the downward band bending at GBs. The decrease in current collection observed at one of the high-angle grain boundaries is explained by Cu being enriched at this GB and hence by the upward shift of the valence band maximum.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b02328</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-05, Vol.10 (17), p.14759-14766</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4352-072X ; 0000-0001-6543-203X ; 0000-0003-1498-1025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b02328$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b02328$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Raghuwanshi, Mohit</creatorcontrib><creatorcontrib>Thöner, Bo</creatorcontrib><creatorcontrib>Soni, Purvesh</creatorcontrib><creatorcontrib>Wuttig, Matthias</creatorcontrib><creatorcontrib>Wuerz, Roland</creatorcontrib><creatorcontrib>Cojocaru-Mirédin, Oana</creatorcontrib><title>Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solar cells containing a polycrystalline Cu­(In,Ga)­Se2 absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell and thus cannot explain the registered record efficiency. Therefore, in the present work, we resolve this conundrum by performing correlative electron beam-induced current–electron backscatter diffraction investigations on more than 700 grain boundaries and demonstrating that 58% of the grain boundaries exhibit an enhanced carrier collection compared to the grain interior. Enhanced carrier collection thus indicates that GBs are beneficial for the device performance. Moreover, 27% of the grain boundaries are neutral and 15% are recombination-active. Correlation with microstructure shows that most of the ∑3 GBs are neutral, whereas the random high-angle grain boundaries are either beneficial or detrimental. Enhanced carrier collection observed for a big fraction of high-angle grain boundaries supports the “type-inversion” model and hence the downward band bending at GBs. The decrease in current collection observed at one of the high-angle grain boundaries is explained by Cu being enriched at this GB and hence by the upward shift of the valence band maximum.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzzlWcWs-NjX1pkuthYoH9Rxms7M0ZZtosqt_32jF07wMDy8zDyHnnE05E_wabIKdm-qaCSn0ARnxeVkWWihx-J_L8picpLRlbCYFUyPiFp-uQW-RhpYu_AZybGgFMTqMtApdh7Z3wVPnaTVMVv5qCRcvKOgyQl7dh8E3kNl0m-EYsYNf-sv1G_rkbAypj4Pth4in5KiFLuHZ3xyTt4fFa_VYrJ-Xq-puXQCXui8EiBYsNLVQSkuZnwHWIGBTopghB1WDZlC3M82ZsoIh2DliK-dSCtWglGMy2fe-x_AxYOrNziWLXQcew5CMyHpucnluH5PLPZrVmW0Yos-HGc7Mj0-z92n-fMpvFHhq6A</recordid><startdate>20180502</startdate><enddate>20180502</enddate><creator>Raghuwanshi, Mohit</creator><creator>Thöner, Bo</creator><creator>Soni, Purvesh</creator><creator>Wuttig, Matthias</creator><creator>Wuerz, Roland</creator><creator>Cojocaru-Mirédin, Oana</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4352-072X</orcidid><orcidid>https://orcid.org/0000-0001-6543-203X</orcidid><orcidid>https://orcid.org/0000-0003-1498-1025</orcidid></search><sort><creationdate>20180502</creationdate><title>Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure</title><author>Raghuwanshi, Mohit ; Thöner, Bo ; Soni, Purvesh ; Wuttig, Matthias ; Wuerz, Roland ; Cojocaru-Mirédin, Oana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a138t-2a2facadb255833b02a0deaed4e26e1a5ba80abf68105c20eac9eef393325de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghuwanshi, Mohit</creatorcontrib><creatorcontrib>Thöner, Bo</creatorcontrib><creatorcontrib>Soni, Purvesh</creatorcontrib><creatorcontrib>Wuttig, Matthias</creatorcontrib><creatorcontrib>Wuerz, Roland</creatorcontrib><creatorcontrib>Cojocaru-Mirédin, Oana</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghuwanshi, Mohit</au><au>Thöner, Bo</au><au>Soni, Purvesh</au><au>Wuttig, Matthias</au><au>Wuerz, Roland</au><au>Cojocaru-Mirédin, Oana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-05-02</date><risdate>2018</risdate><volume>10</volume><issue>17</issue><spage>14759</spage><epage>14766</epage><pages>14759-14766</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solar cells containing a polycrystalline Cu­(In,Ga)­Se2 absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell and thus cannot explain the registered record efficiency. Therefore, in the present work, we resolve this conundrum by performing correlative electron beam-induced current–electron backscatter diffraction investigations on more than 700 grain boundaries and demonstrating that 58% of the grain boundaries exhibit an enhanced carrier collection compared to the grain interior. Enhanced carrier collection thus indicates that GBs are beneficial for the device performance. Moreover, 27% of the grain boundaries are neutral and 15% are recombination-active. Correlation with microstructure shows that most of the ∑3 GBs are neutral, whereas the random high-angle grain boundaries are either beneficial or detrimental. Enhanced carrier collection observed for a big fraction of high-angle grain boundaries supports the “type-inversion” model and hence the downward band bending at GBs. The decrease in current collection observed at one of the high-angle grain boundaries is explained by Cu being enriched at this GB and hence by the upward shift of the valence band maximum.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.8b02328</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4352-072X</orcidid><orcidid>https://orcid.org/0000-0001-6543-203X</orcidid><orcidid>https://orcid.org/0000-0003-1498-1025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-05, Vol.10 (17), p.14759-14766
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2023725558
source American Chemical Society Journals
title Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se2 Grain Boundaries: Correlation with Microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20Enhanced%20Carrier%20Collection%20in%20Cu(In,Ga)Se2%20Grain%20Boundaries:%20Correlation%20with%20Microstructure&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Raghuwanshi,%20Mohit&rft.date=2018-05-02&rft.volume=10&rft.issue=17&rft.spage=14759&rft.epage=14766&rft.pages=14759-14766&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b02328&rft_dat=%3Cproquest_acs_j%3E2023725558%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023725558&rft_id=info:pmid/&rfr_iscdi=true