Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase

This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD’s multi-channel functionality. Then, 11 molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2018-05, Vol.29 (5), p.1703-1713
Hauptverfasser: Diao, Jianxiong, Yu, Xiaolu, Ma, Lin, Li, Yuanqing, Sun, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1713
container_issue 5
container_start_page 1703
container_title Bioconjugate chemistry
container_volume 29
creator Diao, Jianxiong
Yu, Xiaolu
Ma, Lin
Li, Yuanqing
Sun, Ying
description This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD’s multi-channel functionality. Then, 11 molecules ((+)-catechin, (−)-epicatechin, (−)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (−)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 104 to 4.689 × 104 M–1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from −12.14 to −26.65 kJ mol–1. Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.
doi_str_mv 10.1021/acs.bioconjchem.8b00160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2022129389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072765784</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-6394472dc6ae60a3db06cfd8ce05fe0c1c9fd98019c3dd904dda6cf7b291fd323</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1UREvhL4AlLlyyjO182L2tKkpXqgBROEeOPWm9SuKt7bTa_vq63aVCXHqaOTzvOyM9hHxksGDA2Rdt4qJz3vhpba5xXMgOgNXwihyxikNRSsYP8g6lKJgEfkjexrgGAMUkf0MOuapZU9XiiGx-Bp_QTfRyDr02SC9TmE2agx7oLzT-anLJ-YlmYjVpk9wt0mVAHU_okn7HO7oaR9-5wd3rJy7HdcKrLe19oEuDaTuYaz-4CWPCoCO-I697PUR8v5_H5M_Z19-n58XFj2-r0-VFoYWsUlELVZYNt6bWWIMWtoPa9FYahKpHMMyo3ioJTBlhrYLSWp2BpuOK9VZwcUw-73o3wd_M-Xo7umhwGPSEfo4tB84ZV0KqjH76D137OUz5u0w1vKmrRpaZanaUCT7GgH27CW7UYdsyaB-ltFlK-4-Udi8lJz_s--duRPuc-2shA2IHPDY8336p9gFGj6BR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072765784</pqid></control><display><type>article</type><title>Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Diao, Jianxiong ; Yu, Xiaolu ; Ma, Lin ; Li, Yuanqing ; Sun, Ying</creator><creatorcontrib>Diao, Jianxiong ; Yu, Xiaolu ; Ma, Lin ; Li, Yuanqing ; Sun, Ying</creatorcontrib><description>This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD’s multi-channel functionality. Then, 11 molecules ((+)-catechin, (−)-epicatechin, (−)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (−)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 104 to 4.689 × 104 M–1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from −12.14 to −26.65 kJ mol–1. Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.8b00160</identifier><identifier>PMID: 29617563</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetylcholinesterase ; Acetylcholinesterase - chemistry ; Acetylcholinesterase - metabolism ; Affinity ; Aminopyridines - chemistry ; Aminopyridines - pharmacology ; Atropine ; Binding Sites ; Biosensors ; Catechin ; Cholinergic Antagonists - chemistry ; Cholinergic Antagonists - pharmacology ; Drug Discovery ; Enzymatic activity ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Epicatechin ; Flavonoids - chemistry ; Flavonoids - pharmacology ; Fluorescence ; Free energy ; Hesperidin ; Humans ; Immobilization ; Kinetics ; Ligands ; Models, Molecular ; Molecular chains ; Molecular structure ; Naringenin ; Protein Binding ; Proteins ; Quercetin ; Recognition ; Sensitivity ; Zinc</subject><ispartof>Bioconjugate chemistry, 2018-05, Vol.29 (5), p.1703-1713</ispartof><rights>Copyright American Chemical Society May 16, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-6394472dc6ae60a3db06cfd8ce05fe0c1c9fd98019c3dd904dda6cf7b291fd323</citedby><cites>FETCH-LOGICAL-a385t-6394472dc6ae60a3db06cfd8ce05fe0c1c9fd98019c3dd904dda6cf7b291fd323</cites><orcidid>0000-0002-5424-4778 ; 0000-0002-5029-8824 ; 0000-0002-8725-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.8b00160$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.8b00160$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29617563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diao, Jianxiong</creatorcontrib><creatorcontrib>Yu, Xiaolu</creatorcontrib><creatorcontrib>Ma, Lin</creatorcontrib><creatorcontrib>Li, Yuanqing</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><title>Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD’s multi-channel functionality. Then, 11 molecules ((+)-catechin, (−)-epicatechin, (−)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (−)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 104 to 4.689 × 104 M–1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from −12.14 to −26.65 kJ mol–1. Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.</description><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Affinity</subject><subject>Aminopyridines - chemistry</subject><subject>Aminopyridines - pharmacology</subject><subject>Atropine</subject><subject>Binding Sites</subject><subject>Biosensors</subject><subject>Catechin</subject><subject>Cholinergic Antagonists - chemistry</subject><subject>Cholinergic Antagonists - pharmacology</subject><subject>Drug Discovery</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Epicatechin</subject><subject>Flavonoids - chemistry</subject><subject>Flavonoids - pharmacology</subject><subject>Fluorescence</subject><subject>Free energy</subject><subject>Hesperidin</subject><subject>Humans</subject><subject>Immobilization</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>Naringenin</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Recognition</subject><subject>Sensitivity</subject><subject>Zinc</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi1UREvhL4AlLlyyjO182L2tKkpXqgBROEeOPWm9SuKt7bTa_vq63aVCXHqaOTzvOyM9hHxksGDA2Rdt4qJz3vhpba5xXMgOgNXwihyxikNRSsYP8g6lKJgEfkjexrgGAMUkf0MOuapZU9XiiGx-Bp_QTfRyDr02SC9TmE2agx7oLzT-anLJ-YlmYjVpk9wt0mVAHU_okn7HO7oaR9-5wd3rJy7HdcKrLe19oEuDaTuYaz-4CWPCoCO-I697PUR8v5_H5M_Z19-n58XFj2-r0-VFoYWsUlELVZYNt6bWWIMWtoPa9FYahKpHMMyo3ioJTBlhrYLSWp2BpuOK9VZwcUw-73o3wd_M-Xo7umhwGPSEfo4tB84ZV0KqjH76D137OUz5u0w1vKmrRpaZanaUCT7GgH27CW7UYdsyaB-ltFlK-4-Udi8lJz_s--duRPuc-2shA2IHPDY8336p9gFGj6BR</recordid><startdate>20180516</startdate><enddate>20180516</enddate><creator>Diao, Jianxiong</creator><creator>Yu, Xiaolu</creator><creator>Ma, Lin</creator><creator>Li, Yuanqing</creator><creator>Sun, Ying</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5424-4778</orcidid><orcidid>https://orcid.org/0000-0002-5029-8824</orcidid><orcidid>https://orcid.org/0000-0002-8725-8981</orcidid></search><sort><creationdate>20180516</creationdate><title>Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase</title><author>Diao, Jianxiong ; Yu, Xiaolu ; Ma, Lin ; Li, Yuanqing ; Sun, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-6394472dc6ae60a3db06cfd8ce05fe0c1c9fd98019c3dd904dda6cf7b291fd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Affinity</topic><topic>Aminopyridines - chemistry</topic><topic>Aminopyridines - pharmacology</topic><topic>Atropine</topic><topic>Binding Sites</topic><topic>Biosensors</topic><topic>Catechin</topic><topic>Cholinergic Antagonists - chemistry</topic><topic>Cholinergic Antagonists - pharmacology</topic><topic>Drug Discovery</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Epicatechin</topic><topic>Flavonoids - chemistry</topic><topic>Flavonoids - pharmacology</topic><topic>Fluorescence</topic><topic>Free energy</topic><topic>Hesperidin</topic><topic>Humans</topic><topic>Immobilization</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>Naringenin</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Recognition</topic><topic>Sensitivity</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Jianxiong</creatorcontrib><creatorcontrib>Yu, Xiaolu</creatorcontrib><creatorcontrib>Ma, Lin</creatorcontrib><creatorcontrib>Li, Yuanqing</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Jianxiong</au><au>Yu, Xiaolu</au><au>Ma, Lin</au><au>Li, Yuanqing</au><au>Sun, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-05-16</date><risdate>2018</risdate><volume>29</volume><issue>5</issue><spage>1703</spage><epage>1713</epage><pages>1703-1713</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD’s multi-channel functionality. Then, 11 molecules ((+)-catechin, (−)-epicatechin, (−)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (−)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 104 to 4.689 × 104 M–1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from −12.14 to −26.65 kJ mol–1. Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29617563</pmid><doi>10.1021/acs.bioconjchem.8b00160</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5424-4778</orcidid><orcidid>https://orcid.org/0000-0002-5029-8824</orcidid><orcidid>https://orcid.org/0000-0002-8725-8981</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2018-05, Vol.29 (5), p.1703-1713
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_miscellaneous_2022129389
source MEDLINE; American Chemical Society Journals
subjects Acetylcholinesterase
Acetylcholinesterase - chemistry
Acetylcholinesterase - metabolism
Affinity
Aminopyridines - chemistry
Aminopyridines - pharmacology
Atropine
Binding Sites
Biosensors
Catechin
Cholinergic Antagonists - chemistry
Cholinergic Antagonists - pharmacology
Drug Discovery
Enzymatic activity
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Epicatechin
Flavonoids - chemistry
Flavonoids - pharmacology
Fluorescence
Free energy
Hesperidin
Humans
Immobilization
Kinetics
Ligands
Models, Molecular
Molecular chains
Molecular structure
Naringenin
Protein Binding
Proteins
Quercetin
Recognition
Sensitivity
Zinc
title Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Surface%20Structural%20Recognition%20in%20Inactive%20Areas:%20A%20New%20Immobilization%20Strategy%20for%20Acetylcholinesterase&rft.jtitle=Bioconjugate%20chemistry&rft.au=Diao,%20Jianxiong&rft.date=2018-05-16&rft.volume=29&rft.issue=5&rft.spage=1703&rft.epage=1713&rft.pages=1703-1713&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.8b00160&rft_dat=%3Cproquest_cross%3E2072765784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072765784&rft_id=info:pmid/29617563&rfr_iscdi=true