Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)
Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with im...
Gespeichert in:
Veröffentlicht in: | Journal of economic entomology 2018-05, Vol.111 (3), p.1382-1387 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1387 |
---|---|
container_issue | 3 |
container_start_page | 1382 |
container_title | Journal of economic entomology |
container_volume | 111 |
creator | Zhang, Yueliang Liu, Baosheng Zhang, Zhichun Wang, Lihua Guo, Huifang Li, Zhong He, Peng Liu, Zewen Fang, Jichao |
description | Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistantYN-ILR strain compared with the susceptibleYN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost. |
doi_str_mv | 10.1093/jee/toy051 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2022128105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696737723</galeid><oup_id>10.1093/jee/toy051</oup_id><sourcerecordid>A696737723</sourcerecordid><originalsourceid>FETCH-LOGICAL-b417t-2f65afb35bd1ec73b0607797f8367c8cf3ca6b4b2d6699325c57c6be5ccb78383</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxQdR7Fp98QNIQIQqTJs_M8mMb8u2toUFpSr6NiSZGzfLTDImGWg_h1_Y1Fl98KHkIZD8zuHce4riJcGnBLfsbA9wlvwdrsmjYkVa1pS0Jd8fFyuMKS1x1bKj4lmMe4wJpwQ_LY5oy4loMV0Vv86tMRDAJSsHdHE7BYjReoe8QZ-qGqNLcBCRdD1y683uBn2e1exsimgdo9dWJujRN5t26Hq0vdSDn4Lt0Q1EG5N0GpB1aCt9D8O0k7copnCvGYY5opMrGO2UIMj36PzPv84W8PZ58cTIIcKLw31cfP1w8WVzVW4_Xl5v1ttSVUSkkhpeS6NYrXoCWjCFORaiFaZhXOhGG6YlV5WiPedty2ita6G5glprJRrWsOPiZPGdgv85Q0zdaKPO2aQDP8eO5vUR2hBcZ_T1f-jez8HldF1mRC2ooFWmThfqhxygs874FKTOp8-Dau_A2Py-5i0XTAjKsuDdItDBxxjAdHl7owx3HcHdfbdd7rZbus3wq0OGWY3Q_0P_lpmBNwvg5-lho8Pcyvoc6iH0N8kDuv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217572724</pqid></control><display><type>article</type><title>Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)</title><source>MEDLINE</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yueliang ; Liu, Baosheng ; Zhang, Zhichun ; Wang, Lihua ; Guo, Huifang ; Li, Zhong ; He, Peng ; Liu, Zewen ; Fang, Jichao</creator><creatorcontrib>Zhang, Yueliang ; Liu, Baosheng ; Zhang, Zhichun ; Wang, Lihua ; Guo, Huifang ; Li, Zhong ; He, Peng ; Liu, Zewen ; Fang, Jichao</creatorcontrib><description>Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistantYN-ILR strain compared with the susceptibleYN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.</description><identifier>ISSN: 0022-0493</identifier><identifier>EISSN: 1938-291X</identifier><identifier>DOI: 10.1093/jee/toy051</identifier><identifier>PMID: 29617902</identifier><language>eng</language><publisher>US: Entomological Society of America</publisher><subject>Acetylcholine receptors (nicotinic) ; Animals ; Binding sites ; Bioassays ; Bioengineering ; Costs ; Cytochrome ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P450s ; Delphacidae ; Detoxification ; Female ; fitness cost ; Gene Expression - drug effects ; Gene Expression - genetics ; Genes ; Genetic aspects ; Hemiptera ; Hemiptera - drug effects ; Hemiptera - genetics ; Hemiptera - growth & development ; Imidacloprid ; Insect pests ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insecticide resistance ; Insecticide Resistance - genetics ; INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT ; Insecticides ; Insecticides - pharmacology ; Insects ; Laboratories ; Laodelphax striatellus ; Male ; Neonicotinoids - pharmacology ; nicotinic acetylcholine receptor ; Nitro Compounds - pharmacology ; Nymph - drug effects ; Nymph - genetics ; Nymph - growth & development ; Pesticides ; Pests ; Piperonyl butoxide ; Receptors, Nicotinic - genetics ; Receptors, Nicotinic - metabolism ; Reproductive fitness ; Rice ; Synergism</subject><ispartof>Journal of economic entomology, 2018-05, Vol.111 (3), p.1382-1387</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. journals.permissions@oup.com</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018</rights><rights>COPYRIGHT 2018 Oxford University Press</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b417t-2f65afb35bd1ec73b0607797f8367c8cf3ca6b4b2d6699325c57c6be5ccb78383</citedby><cites>FETCH-LOGICAL-b417t-2f65afb35bd1ec73b0607797f8367c8cf3ca6b4b2d6699325c57c6be5ccb78383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29617902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yueliang</creatorcontrib><creatorcontrib>Liu, Baosheng</creatorcontrib><creatorcontrib>Zhang, Zhichun</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Guo, Huifang</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Liu, Zewen</creatorcontrib><creatorcontrib>Fang, Jichao</creatorcontrib><title>Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)</title><title>Journal of economic entomology</title><addtitle>J Econ Entomol</addtitle><description>Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistantYN-ILR strain compared with the susceptibleYN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.</description><subject>Acetylcholine receptors (nicotinic)</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Bioassays</subject><subject>Bioengineering</subject><subject>Costs</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P450s</subject><subject>Delphacidae</subject><subject>Detoxification</subject><subject>Female</subject><subject>fitness cost</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Hemiptera</subject><subject>Hemiptera - drug effects</subject><subject>Hemiptera - genetics</subject><subject>Hemiptera - growth & development</subject><subject>Imidacloprid</subject><subject>Insect pests</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insecticide resistance</subject><subject>Insecticide Resistance - genetics</subject><subject>INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Insects</subject><subject>Laboratories</subject><subject>Laodelphax striatellus</subject><subject>Male</subject><subject>Neonicotinoids - pharmacology</subject><subject>nicotinic acetylcholine receptor</subject><subject>Nitro Compounds - pharmacology</subject><subject>Nymph - drug effects</subject><subject>Nymph - genetics</subject><subject>Nymph - growth & development</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Piperonyl butoxide</subject><subject>Receptors, Nicotinic - genetics</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Reproductive fitness</subject><subject>Rice</subject><subject>Synergism</subject><issn>0022-0493</issn><issn>1938-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxQdR7Fp98QNIQIQqTJs_M8mMb8u2toUFpSr6NiSZGzfLTDImGWg_h1_Y1Fl98KHkIZD8zuHce4riJcGnBLfsbA9wlvwdrsmjYkVa1pS0Jd8fFyuMKS1x1bKj4lmMe4wJpwQ_LY5oy4loMV0Vv86tMRDAJSsHdHE7BYjReoe8QZ-qGqNLcBCRdD1y683uBn2e1exsimgdo9dWJujRN5t26Hq0vdSDn4Lt0Q1EG5N0GpB1aCt9D8O0k7copnCvGYY5opMrGO2UIMj36PzPv84W8PZ58cTIIcKLw31cfP1w8WVzVW4_Xl5v1ttSVUSkkhpeS6NYrXoCWjCFORaiFaZhXOhGG6YlV5WiPedty2ita6G5glprJRrWsOPiZPGdgv85Q0zdaKPO2aQDP8eO5vUR2hBcZ_T1f-jez8HldF1mRC2ooFWmThfqhxygs874FKTOp8-Dau_A2Py-5i0XTAjKsuDdItDBxxjAdHl7owx3HcHdfbdd7rZbus3wq0OGWY3Q_0P_lpmBNwvg5-lho8Pcyvoc6iH0N8kDuv4</recordid><startdate>20180528</startdate><enddate>20180528</enddate><creator>Zhang, Yueliang</creator><creator>Liu, Baosheng</creator><creator>Zhang, Zhichun</creator><creator>Wang, Lihua</creator><creator>Guo, Huifang</creator><creator>Li, Zhong</creator><creator>He, Peng</creator><creator>Liu, Zewen</creator><creator>Fang, Jichao</creator><general>Entomological Society of America</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180528</creationdate><title>Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)</title><author>Zhang, Yueliang ; Liu, Baosheng ; Zhang, Zhichun ; Wang, Lihua ; Guo, Huifang ; Li, Zhong ; He, Peng ; Liu, Zewen ; Fang, Jichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b417t-2f65afb35bd1ec73b0607797f8367c8cf3ca6b4b2d6699325c57c6be5ccb78383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylcholine receptors (nicotinic)</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Bioassays</topic><topic>Bioengineering</topic><topic>Costs</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P450s</topic><topic>Delphacidae</topic><topic>Detoxification</topic><topic>Female</topic><topic>fitness cost</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Hemiptera</topic><topic>Hemiptera - drug effects</topic><topic>Hemiptera - genetics</topic><topic>Hemiptera - growth & development</topic><topic>Imidacloprid</topic><topic>Insect pests</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insecticide resistance</topic><topic>Insecticide Resistance - genetics</topic><topic>INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Insects</topic><topic>Laboratories</topic><topic>Laodelphax striatellus</topic><topic>Male</topic><topic>Neonicotinoids - pharmacology</topic><topic>nicotinic acetylcholine receptor</topic><topic>Nitro Compounds - pharmacology</topic><topic>Nymph - drug effects</topic><topic>Nymph - genetics</topic><topic>Nymph - growth & development</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Piperonyl butoxide</topic><topic>Receptors, Nicotinic - genetics</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Reproductive fitness</topic><topic>Rice</topic><topic>Synergism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yueliang</creatorcontrib><creatorcontrib>Liu, Baosheng</creatorcontrib><creatorcontrib>Zhang, Zhichun</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Guo, Huifang</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Liu, Zewen</creatorcontrib><creatorcontrib>Fang, Jichao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest_Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of economic entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yueliang</au><au>Liu, Baosheng</au><au>Zhang, Zhichun</au><au>Wang, Lihua</au><au>Guo, Huifang</au><au>Li, Zhong</au><au>He, Peng</au><au>Liu, Zewen</au><au>Fang, Jichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)</atitle><jtitle>Journal of economic entomology</jtitle><addtitle>J Econ Entomol</addtitle><date>2018-05-28</date><risdate>2018</risdate><volume>111</volume><issue>3</issue><spage>1382</spage><epage>1387</epage><pages>1382-1387</pages><issn>0022-0493</issn><eissn>1938-291X</eissn><abstract>Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistantYN-ILR strain compared with the susceptibleYN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.</abstract><cop>US</cop><pub>Entomological Society of America</pub><pmid>29617902</pmid><doi>10.1093/jee/toy051</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0493 |
ispartof | Journal of economic entomology, 2018-05, Vol.111 (3), p.1382-1387 |
issn | 0022-0493 1938-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_2022128105 |
source | MEDLINE; Oxford Journals Online; Alma/SFX Local Collection |
subjects | Acetylcholine receptors (nicotinic) Animals Binding sites Bioassays Bioengineering Costs Cytochrome Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism cytochrome P450s Delphacidae Detoxification Female fitness cost Gene Expression - drug effects Gene Expression - genetics Genes Genetic aspects Hemiptera Hemiptera - drug effects Hemiptera - genetics Hemiptera - growth & development Imidacloprid Insect pests Insect Proteins - genetics Insect Proteins - metabolism Insecticide resistance Insecticide Resistance - genetics INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT Insecticides Insecticides - pharmacology Insects Laboratories Laodelphax striatellus Male Neonicotinoids - pharmacology nicotinic acetylcholine receptor Nitro Compounds - pharmacology Nymph - drug effects Nymph - genetics Nymph - growth & development Pesticides Pests Piperonyl butoxide Receptors, Nicotinic - genetics Receptors, Nicotinic - metabolism Reproductive fitness Rice Synergism |
title | Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Expression%20of%20P450%20Genes%20and%20nAChR%20Subunits%20Associated%20With%20Imidacloprid%20Resistance%20in%20Laodelphax%20striatellus%20(Hemiptera:%20Delphacidae)&rft.jtitle=Journal%20of%20economic%20entomology&rft.au=Zhang,%20Yueliang&rft.date=2018-05-28&rft.volume=111&rft.issue=3&rft.spage=1382&rft.epage=1387&rft.pages=1382-1387&rft.issn=0022-0493&rft.eissn=1938-291X&rft_id=info:doi/10.1093/jee/toy051&rft_dat=%3Cgale_proqu%3EA696737723%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217572724&rft_id=info:pmid/29617902&rft_galeid=A696737723&rft_oup_id=10.1093/jee/toy051&rfr_iscdi=true |