Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum

A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet--f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-11, Vol.105 (44), p.16994-16999
Hauptverfasser: Makarieva, Anastassia M, Gorshkov, Victor G, Li, Bai-Lian, Chown, Steven L, Reich, Peter B, Gavrilov, Valery M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16999
container_issue 44
container_start_page 16994
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Makarieva, Anastassia M
Gorshkov, Victor G
Li, Bai-Lian
Chown, Steven L
Reich, Peter B
Gavrilov, Valery M
description A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet--from bacteria to elephants, and algae to sapling trees--we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 10²⁰-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg⁻¹. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole.
doi_str_mv 10.1073/pnas.0802148105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20214486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465213</jstor_id><sourcerecordid>25465213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-8eba4db2e3ecbf5d45a20de9e612c1188c4fefd86dbb1179415073a05ec3e3853</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmwOIA4pLUdO7E5IKGqfEhFHKBny3HGixcnTu2kohJ_PA677AKXnmz5_eaNZ15RPCb4hOCmOh0HnU6wwJQwQTC_U6wIlqSsmcR3ixXGtCkFo-yoeJDSBmMsucD3iyMiJKeikqvi5yfQA-p1SmUawTjrDOph0m3w-Rb1BAnpCChN0X13w9rfoOR653VE2sSQEvLOwsuULTYhoi702g3pNTq_dh0MBpDNr3-QvW8YJ9fP_cPintU-waPdeVxcvjv_evahvPj8_uPZ24vS1BRPpYBWs66lUIFpLe8Y1xR3IKEm1BAihGEWbCfqrm0JaSQjPO9GYw6mgkrw6rh4s_Ud57aHzsAwRe3VGF2v440K2ql_lcF9U-twrShvKOciG7zYGcRwNUOaVO-SAe_1AGFOqpYNq6lgt4J0SYqJOoPP_wM3YY5D3kJmSNXghi5tT7fQ701HsPsvE6yW_NWSvzrknyue_j3pgd8FngG0A5bKgx1XjClSS7nM8OoWRNnZ-wl-TJl9smU3aQpxD1POak5JlfVnW93qoPQ6uqQuvywDYsJ5UwtR_QLeatoV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201370728</pqid></control><display><type>article</type><title>Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Makarieva, Anastassia M ; Gorshkov, Victor G ; Li, Bai-Lian ; Chown, Steven L ; Reich, Peter B ; Gavrilov, Valery M</creator><creatorcontrib>Makarieva, Anastassia M ; Gorshkov, Victor G ; Li, Bai-Lian ; Chown, Steven L ; Reich, Peter B ; Gavrilov, Valery M</creatorcontrib><description>A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet--from bacteria to elephants, and algae to sapling trees--we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 10²⁰-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg⁻¹. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0802148105</identifier><identifier>PMID: 18952839</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algae ; Animal physiology ; Animals ; Average linear density ; Basal metabolism ; Biodiversity ; Biological Evolution ; Biological Sciences ; Body size ; Body Weight ; Databases, Factual ; Elephantidae ; Energy Metabolism - physiology ; Humans ; Metabolic Networks and Pathways ; Metabolism ; Nitrogen ; Nitrogen metabolism ; Nonnative species ; Physiology ; Plants ; Prokaryotes ; Selection, Genetic ; Systems Biology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-11, Vol.105 (44), p.16994-16999</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 4, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-8eba4db2e3ecbf5d45a20de9e612c1188c4fefd86dbb1179415073a05ec3e3853</citedby><cites>FETCH-LOGICAL-c620t-8eba4db2e3ecbf5d45a20de9e612c1188c4fefd86dbb1179415073a05ec3e3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465213$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465213$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18952839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makarieva, Anastassia M</creatorcontrib><creatorcontrib>Gorshkov, Victor G</creatorcontrib><creatorcontrib>Li, Bai-Lian</creatorcontrib><creatorcontrib>Chown, Steven L</creatorcontrib><creatorcontrib>Reich, Peter B</creatorcontrib><creatorcontrib>Gavrilov, Valery M</creatorcontrib><title>Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet--from bacteria to elephants, and algae to sapling trees--we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 10²⁰-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg⁻¹. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole.</description><subject>Algae</subject><subject>Animal physiology</subject><subject>Animals</subject><subject>Average linear density</subject><subject>Basal metabolism</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Body size</subject><subject>Body Weight</subject><subject>Databases, Factual</subject><subject>Elephantidae</subject><subject>Energy Metabolism - physiology</subject><subject>Humans</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen metabolism</subject><subject>Nonnative species</subject><subject>Physiology</subject><subject>Plants</subject><subject>Prokaryotes</subject><subject>Selection, Genetic</subject><subject>Systems Biology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEokvhzAmwOIA4pLUdO7E5IKGqfEhFHKBny3HGixcnTu2kohJ_PA677AKXnmz5_eaNZ15RPCb4hOCmOh0HnU6wwJQwQTC_U6wIlqSsmcR3ixXGtCkFo-yoeJDSBmMsucD3iyMiJKeikqvi5yfQA-p1SmUawTjrDOph0m3w-Rb1BAnpCChN0X13w9rfoOR653VE2sSQEvLOwsuULTYhoi702g3pNTq_dh0MBpDNr3-QvW8YJ9fP_cPintU-waPdeVxcvjv_evahvPj8_uPZ24vS1BRPpYBWs66lUIFpLe8Y1xR3IKEm1BAihGEWbCfqrm0JaSQjPO9GYw6mgkrw6rh4s_Ud57aHzsAwRe3VGF2v440K2ql_lcF9U-twrShvKOciG7zYGcRwNUOaVO-SAe_1AGFOqpYNq6lgt4J0SYqJOoPP_wM3YY5D3kJmSNXghi5tT7fQ701HsPsvE6yW_NWSvzrknyue_j3pgd8FngG0A5bKgx1XjClSS7nM8OoWRNnZ-wl-TJl9smU3aQpxD1POak5JlfVnW93qoPQ6uqQuvywDYsJ5UwtR_QLeatoV</recordid><startdate>20081104</startdate><enddate>20081104</enddate><creator>Makarieva, Anastassia M</creator><creator>Gorshkov, Victor G</creator><creator>Li, Bai-Lian</creator><creator>Chown, Steven L</creator><creator>Reich, Peter B</creator><creator>Gavrilov, Valery M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081104</creationdate><title>Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum</title><author>Makarieva, Anastassia M ; Gorshkov, Victor G ; Li, Bai-Lian ; Chown, Steven L ; Reich, Peter B ; Gavrilov, Valery M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-8eba4db2e3ecbf5d45a20de9e612c1188c4fefd86dbb1179415073a05ec3e3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algae</topic><topic>Animal physiology</topic><topic>Animals</topic><topic>Average linear density</topic><topic>Basal metabolism</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Body size</topic><topic>Body Weight</topic><topic>Databases, Factual</topic><topic>Elephantidae</topic><topic>Energy Metabolism - physiology</topic><topic>Humans</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen metabolism</topic><topic>Nonnative species</topic><topic>Physiology</topic><topic>Plants</topic><topic>Prokaryotes</topic><topic>Selection, Genetic</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarieva, Anastassia M</creatorcontrib><creatorcontrib>Gorshkov, Victor G</creatorcontrib><creatorcontrib>Li, Bai-Lian</creatorcontrib><creatorcontrib>Chown, Steven L</creatorcontrib><creatorcontrib>Reich, Peter B</creatorcontrib><creatorcontrib>Gavrilov, Valery M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarieva, Anastassia M</au><au>Gorshkov, Victor G</au><au>Li, Bai-Lian</au><au>Chown, Steven L</au><au>Reich, Peter B</au><au>Gavrilov, Valery M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-11-04</date><risdate>2008</risdate><volume>105</volume><issue>44</issue><spage>16994</spage><epage>16999</epage><pages>16994-16999</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet--from bacteria to elephants, and algae to sapling trees--we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 10²⁰-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg⁻¹. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18952839</pmid><doi>10.1073/pnas.0802148105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-11, Vol.105 (44), p.16994-16999
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_20214486
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algae
Animal physiology
Animals
Average linear density
Basal metabolism
Biodiversity
Biological Evolution
Biological Sciences
Body size
Body Weight
Databases, Factual
Elephantidae
Energy Metabolism - physiology
Humans
Metabolic Networks and Pathways
Metabolism
Nitrogen
Nitrogen metabolism
Nonnative species
Physiology
Plants
Prokaryotes
Selection, Genetic
Systems Biology
title Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20mass-specific%20metabolic%20rates%20are%20strikingly%20similar%20across%20life's%20major%20domains:%20Evidence%20for%20life's%20metabolic%20optimum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Makarieva,%20Anastassia%20M&rft.date=2008-11-04&rft.volume=105&rft.issue=44&rft.spage=16994&rft.epage=16999&rft.pages=16994-16999&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0802148105&rft_dat=%3Cjstor_proqu%3E25465213%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201370728&rft_id=info:pmid/18952839&rft_jstor_id=25465213&rfr_iscdi=true