Magnetically Powered Annelid‐Worm‐Like Microswimmers
A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-04, Vol.14 (17), p.e1704546-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e1704546 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Liu, Yiman Ge, Dongqing Cong, Jiawei Piao, Hong‐Guang Huang, Xiufeng Xu, Yunli Lu, Guangduo Pan, Liqing Liu, Min |
description | A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and consistent performance of the microswimmers. The resulting annelid‐worm‐like microswimmers display efficient propulsion under an oscillating magnetic field, reaching a peak speed of ≈100 µm s−1. The speed and directionality of the microswimmer can be readily controlled by changing the parameters of the field inputs. Additionally, it is demonstrated that the microswimmers are able to transport microparticles toward a predefined destination, although the translation velocity is inevitably reduced due to the additional hydrodynamic resistance of the microparticles. These annelid‐worm‐like microswimmers have excellent mobility, good maneuverability, and strong transport capacity, and they hold considerable promise for diverse biomedical, chemical sensing, and environmental applications.
Magnetically powered annelid‐worm‐like microswimmers are fabricated by sputtering an Ni/Fe alloy through a shadow mask on a prestrained poly(dimethylsiloxane) film. They display efficient propulsion under an oscillating magnetic field. The prepared annelid‐worm‐like microswimmers are able to transport microparticles with excellent maneuverability toward predefined destination, holding considerable promise for myriad future biomedical applications. |
doi_str_mv | 10.1002/smll.201704546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2021323359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021323359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-df45fa804a8465b3c00c5e896cc56a10445f48d24c33d7707c211454d750fbd43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHqXgxUvr5HN3j6X4BVsUVDwuaZKV1OxuTbqU3vwJ_kZ_iSmtFbx4mXdgnnmZeRE6xTDEAOQyVM4NCeAEGGdiD3WxwHQgUpLt73oMHXQUwgyAYsKSQ9QhmcA4li5KJ_K1NgurpHOr_kOzNN7o_qiujbP66-PzpfFVlNy-mf7EKt-Epa0q48MxOiilC-Zkqz30fH31NL4d5Pc3d-NRPlCMZmKgS8ZLmQKTKRN8ShWA4ibNhFJcSAwsjlmqCVOU6iSBRBGM4ys64VBONaM9dLHxnfvmvTVhUVQ2KOOcrE3ThoIAwZRQyrOInv9BZ03r63hdpCgkPOOCRGq4odbPBG_KYu5tJf2qwFCsMy3WmRa7TOPC2da2nVZG7_CfECOQbYCldWb1j13xOMnzX_NvBkqDIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030759562</pqid></control><display><type>article</type><title>Magnetically Powered Annelid‐Worm‐Like Microswimmers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yiman ; Ge, Dongqing ; Cong, Jiawei ; Piao, Hong‐Guang ; Huang, Xiufeng ; Xu, Yunli ; Lu, Guangduo ; Pan, Liqing ; Liu, Min</creator><creatorcontrib>Liu, Yiman ; Ge, Dongqing ; Cong, Jiawei ; Piao, Hong‐Guang ; Huang, Xiufeng ; Xu, Yunli ; Lu, Guangduo ; Pan, Liqing ; Liu, Min</creatorcontrib><description>A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and consistent performance of the microswimmers. The resulting annelid‐worm‐like microswimmers display efficient propulsion under an oscillating magnetic field, reaching a peak speed of ≈100 µm s−1. The speed and directionality of the microswimmer can be readily controlled by changing the parameters of the field inputs. Additionally, it is demonstrated that the microswimmers are able to transport microparticles toward a predefined destination, although the translation velocity is inevitably reduced due to the additional hydrodynamic resistance of the microparticles. These annelid‐worm‐like microswimmers have excellent mobility, good maneuverability, and strong transport capacity, and they hold considerable promise for diverse biomedical, chemical sensing, and environmental applications.
Magnetically powered annelid‐worm‐like microswimmers are fabricated by sputtering an Ni/Fe alloy through a shadow mask on a prestrained poly(dimethylsiloxane) film. They display efficient propulsion under an oscillating magnetic field. The prepared annelid‐worm‐like microswimmers are able to transport microparticles with excellent maneuverability toward predefined destination, holding considerable promise for myriad future biomedical applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201704546</identifier><identifier>PMID: 29611296</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>annelid worms ; Biomimetics ; cargo delivery ; Maneuverability ; Microparticles ; microswimmers ; Nanotechnology ; Parameters ; remote actuation ; Substrates ; Transport</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-04, Vol.14 (17), p.e1704546-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-df45fa804a8465b3c00c5e896cc56a10445f48d24c33d7707c211454d750fbd43</citedby><cites>FETCH-LOGICAL-c4396-df45fa804a8465b3c00c5e896cc56a10445f48d24c33d7707c211454d750fbd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201704546$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201704546$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29611296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yiman</creatorcontrib><creatorcontrib>Ge, Dongqing</creatorcontrib><creatorcontrib>Cong, Jiawei</creatorcontrib><creatorcontrib>Piao, Hong‐Guang</creatorcontrib><creatorcontrib>Huang, Xiufeng</creatorcontrib><creatorcontrib>Xu, Yunli</creatorcontrib><creatorcontrib>Lu, Guangduo</creatorcontrib><creatorcontrib>Pan, Liqing</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><title>Magnetically Powered Annelid‐Worm‐Like Microswimmers</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and consistent performance of the microswimmers. The resulting annelid‐worm‐like microswimmers display efficient propulsion under an oscillating magnetic field, reaching a peak speed of ≈100 µm s−1. The speed and directionality of the microswimmer can be readily controlled by changing the parameters of the field inputs. Additionally, it is demonstrated that the microswimmers are able to transport microparticles toward a predefined destination, although the translation velocity is inevitably reduced due to the additional hydrodynamic resistance of the microparticles. These annelid‐worm‐like microswimmers have excellent mobility, good maneuverability, and strong transport capacity, and they hold considerable promise for diverse biomedical, chemical sensing, and environmental applications.
Magnetically powered annelid‐worm‐like microswimmers are fabricated by sputtering an Ni/Fe alloy through a shadow mask on a prestrained poly(dimethylsiloxane) film. They display efficient propulsion under an oscillating magnetic field. The prepared annelid‐worm‐like microswimmers are able to transport microparticles with excellent maneuverability toward predefined destination, holding considerable promise for myriad future biomedical applications.</description><subject>annelid worms</subject><subject>Biomimetics</subject><subject>cargo delivery</subject><subject>Maneuverability</subject><subject>Microparticles</subject><subject>microswimmers</subject><subject>Nanotechnology</subject><subject>Parameters</subject><subject>remote actuation</subject><subject>Substrates</subject><subject>Transport</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlavHqXgxUvr5HN3j6X4BVsUVDwuaZKV1OxuTbqU3vwJ_kZ_iSmtFbx4mXdgnnmZeRE6xTDEAOQyVM4NCeAEGGdiD3WxwHQgUpLt73oMHXQUwgyAYsKSQ9QhmcA4li5KJ_K1NgurpHOr_kOzNN7o_qiujbP66-PzpfFVlNy-mf7EKt-Epa0q48MxOiilC-Zkqz30fH31NL4d5Pc3d-NRPlCMZmKgS8ZLmQKTKRN8ShWA4ibNhFJcSAwsjlmqCVOU6iSBRBGM4ys64VBONaM9dLHxnfvmvTVhUVQ2KOOcrE3ThoIAwZRQyrOInv9BZ03r63hdpCgkPOOCRGq4odbPBG_KYu5tJf2qwFCsMy3WmRa7TOPC2da2nVZG7_CfECOQbYCldWb1j13xOMnzX_NvBkqDIw</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Liu, Yiman</creator><creator>Ge, Dongqing</creator><creator>Cong, Jiawei</creator><creator>Piao, Hong‐Guang</creator><creator>Huang, Xiufeng</creator><creator>Xu, Yunli</creator><creator>Lu, Guangduo</creator><creator>Pan, Liqing</creator><creator>Liu, Min</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Magnetically Powered Annelid‐Worm‐Like Microswimmers</title><author>Liu, Yiman ; Ge, Dongqing ; Cong, Jiawei ; Piao, Hong‐Guang ; Huang, Xiufeng ; Xu, Yunli ; Lu, Guangduo ; Pan, Liqing ; Liu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-df45fa804a8465b3c00c5e896cc56a10445f48d24c33d7707c211454d750fbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>annelid worms</topic><topic>Biomimetics</topic><topic>cargo delivery</topic><topic>Maneuverability</topic><topic>Microparticles</topic><topic>microswimmers</topic><topic>Nanotechnology</topic><topic>Parameters</topic><topic>remote actuation</topic><topic>Substrates</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yiman</creatorcontrib><creatorcontrib>Ge, Dongqing</creatorcontrib><creatorcontrib>Cong, Jiawei</creatorcontrib><creatorcontrib>Piao, Hong‐Guang</creatorcontrib><creatorcontrib>Huang, Xiufeng</creatorcontrib><creatorcontrib>Xu, Yunli</creatorcontrib><creatorcontrib>Lu, Guangduo</creatorcontrib><creatorcontrib>Pan, Liqing</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yiman</au><au>Ge, Dongqing</au><au>Cong, Jiawei</au><au>Piao, Hong‐Guang</au><au>Huang, Xiufeng</au><au>Xu, Yunli</au><au>Lu, Guangduo</au><au>Pan, Liqing</au><au>Liu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetically Powered Annelid‐Worm‐Like Microswimmers</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-04</date><risdate>2018</risdate><volume>14</volume><issue>17</issue><spage>e1704546</spage><epage>n/a</epage><pages>e1704546-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A bioinspired magnetically powered microswimmer is designed and experimentally demonstrated by mimicking the morphology of annelid worms. The structural parameters of the microswimmer, such as the surface wrinkling, can be controlled by applying prestrain on substrate for the precise fabrication and consistent performance of the microswimmers. The resulting annelid‐worm‐like microswimmers display efficient propulsion under an oscillating magnetic field, reaching a peak speed of ≈100 µm s−1. The speed and directionality of the microswimmer can be readily controlled by changing the parameters of the field inputs. Additionally, it is demonstrated that the microswimmers are able to transport microparticles toward a predefined destination, although the translation velocity is inevitably reduced due to the additional hydrodynamic resistance of the microparticles. These annelid‐worm‐like microswimmers have excellent mobility, good maneuverability, and strong transport capacity, and they hold considerable promise for diverse biomedical, chemical sensing, and environmental applications.
Magnetically powered annelid‐worm‐like microswimmers are fabricated by sputtering an Ni/Fe alloy through a shadow mask on a prestrained poly(dimethylsiloxane) film. They display efficient propulsion under an oscillating magnetic field. The prepared annelid‐worm‐like microswimmers are able to transport microparticles with excellent maneuverability toward predefined destination, holding considerable promise for myriad future biomedical applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29611296</pmid><doi>10.1002/smll.201704546</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-04, Vol.14 (17), p.e1704546-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2021323359 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | annelid worms Biomimetics cargo delivery Maneuverability Microparticles microswimmers Nanotechnology Parameters remote actuation Substrates Transport |
title | Magnetically Powered Annelid‐Worm‐Like Microswimmers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetically%20Powered%20Annelid%E2%80%90Worm%E2%80%90Like%20Microswimmers&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Yiman&rft.date=2018-04&rft.volume=14&rft.issue=17&rft.spage=e1704546&rft.epage=n/a&rft.pages=e1704546-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201704546&rft_dat=%3Cproquest_cross%3E2021323359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030759562&rft_id=info:pmid/29611296&rfr_iscdi=true |