Transient chaos in the Lorenz-type map with periodic forcing
We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the s...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2018-03, Vol.28 (3), p.033107-033107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 033107 |
---|---|
container_issue | 3 |
container_start_page | 033107 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 28 |
creator | Maslennikov, Oleg V. Nekorkin, Vladimir I. Kurths, Jürgen |
description | We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions. |
doi_str_mv | 10.1063/1.5018265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020884355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020884355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-A5KhC6n5kNhvwIsUvKHip52W7mdiVJht3U6X-elNa9aSnmcPDO8NLyCmjY0aluGJjoExxCXtkyKgq0lwqvr_ZIUsZUDogRzG-UkoZF3BIBryQNJNQDMn1LJgmOmy6xC6Mj4lrkm6BydQHbD7Tbt1iUps2-XDdImkxOF86m1Q-WNe8HJODyiwjnuzmiDzf3c4mD-n06f5xcjNNrQDo0jIHAWhyFAUCCFkoiqYS_b9lJg2gMnaeI6fAZYl5ls8lR6lEqQBKKAoQI3K-zW2Df1th7HTtosXl0jToV1FzyqlSWX-spxdbaoOPMWCl2-BqE9aaUb0pSzO9K6u3Z7vY1bzG8kd-t9ODyy2I1nWmc775N-1P_O7DL9RtWYkvo65-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020884355</pqid></control><display><type>article</type><title>Transient chaos in the Lorenz-type map with periodic forcing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</creator><creatorcontrib>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</creatorcontrib><description>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5018265</identifier><identifier>PMID: 29604659</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 2018-03, Vol.28 (3), p.033107-033107</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</citedby><cites>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</cites><orcidid>0000-0003-0173-587X ; 0000-0002-5926-4276 ; 0000-0002-8909-321X ; 000000030173587X ; 000000028909321X ; 0000000259264276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29604659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><title>Transient chaos in the Lorenz-type map with periodic forcing</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-A5KhC6n5kNhvwIsUvKHip52W7mdiVJht3U6X-elNa9aSnmcPDO8NLyCmjY0aluGJjoExxCXtkyKgq0lwqvr_ZIUsZUDogRzG-UkoZF3BIBryQNJNQDMn1LJgmOmy6xC6Mj4lrkm6BydQHbD7Tbt1iUps2-XDdImkxOF86m1Q-WNe8HJODyiwjnuzmiDzf3c4mD-n06f5xcjNNrQDo0jIHAWhyFAUCCFkoiqYS_b9lJg2gMnaeI6fAZYl5ls8lR6lEqQBKKAoQI3K-zW2Df1th7HTtosXl0jToV1FzyqlSWX-spxdbaoOPMWCl2-BqE9aaUb0pSzO9K6u3Z7vY1bzG8kd-t9ODyy2I1nWmc775N-1P_O7DL9RtWYkvo65-dA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Maslennikov, Oleg V.</creator><creator>Nekorkin, Vladimir I.</creator><creator>Kurths, Jürgen</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid><orcidid>https://orcid.org/000000030173587X</orcidid><orcidid>https://orcid.org/000000028909321X</orcidid><orcidid>https://orcid.org/0000000259264276</orcidid></search><sort><creationdate>201803</creationdate><title>Transient chaos in the Lorenz-type map with periodic forcing</title><author>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslennikov, Oleg V.</au><au>Nekorkin, Vladimir I.</au><au>Kurths, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient chaos in the Lorenz-type map with periodic forcing</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-03</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>033107</spage><epage>033107</epage><pages>033107-033107</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</abstract><cop>United States</cop><pmid>29604659</pmid><doi>10.1063/1.5018265</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid><orcidid>https://orcid.org/000000030173587X</orcidid><orcidid>https://orcid.org/000000028909321X</orcidid><orcidid>https://orcid.org/0000000259264276</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2018-03, Vol.28 (3), p.033107-033107 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2020884355 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Transient chaos in the Lorenz-type map with periodic forcing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20chaos%20in%20the%20Lorenz-type%20map%20with%20periodic%20forcing&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Maslennikov,%20Oleg%20V.&rft.date=2018-03&rft.volume=28&rft.issue=3&rft.spage=033107&rft.epage=033107&rft.pages=033107-033107&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5018265&rft_dat=%3Cproquest_cross%3E2020884355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020884355&rft_id=info:pmid/29604659&rfr_iscdi=true |