Transient chaos in the Lorenz-type map with periodic forcing

We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2018-03, Vol.28 (3), p.033107-033107
Hauptverfasser: Maslennikov, Oleg V., Nekorkin, Vladimir I., Kurths, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033107
container_issue 3
container_start_page 033107
container_title Chaos (Woodbury, N.Y.)
container_volume 28
creator Maslennikov, Oleg V.
Nekorkin, Vladimir I.
Kurths, Jürgen
description We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.
doi_str_mv 10.1063/1.5018265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020884355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020884355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-A5KhC6n5kNhvwIsUvKHip52W7mdiVJht3U6X-elNa9aSnmcPDO8NLyCmjY0aluGJjoExxCXtkyKgq0lwqvr_ZIUsZUDogRzG-UkoZF3BIBryQNJNQDMn1LJgmOmy6xC6Mj4lrkm6BydQHbD7Tbt1iUps2-XDdImkxOF86m1Q-WNe8HJODyiwjnuzmiDzf3c4mD-n06f5xcjNNrQDo0jIHAWhyFAUCCFkoiqYS_b9lJg2gMnaeI6fAZYl5ls8lR6lEqQBKKAoQI3K-zW2Df1th7HTtosXl0jToV1FzyqlSWX-spxdbaoOPMWCl2-BqE9aaUb0pSzO9K6u3Z7vY1bzG8kd-t9ODyy2I1nWmc775N-1P_O7DL9RtWYkvo65-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020884355</pqid></control><display><type>article</type><title>Transient chaos in the Lorenz-type map with periodic forcing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</creator><creatorcontrib>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</creatorcontrib><description>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5018265</identifier><identifier>PMID: 29604659</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 2018-03, Vol.28 (3), p.033107-033107</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</citedby><cites>FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</cites><orcidid>0000-0003-0173-587X ; 0000-0002-5926-4276 ; 0000-0002-8909-321X ; 000000030173587X ; 000000028909321X ; 0000000259264276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29604659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><title>Transient chaos in the Lorenz-type map with periodic forcing</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-A5KhC6n5kNhvwIsUvKHip52W7mdiVJht3U6X-elNa9aSnmcPDO8NLyCmjY0aluGJjoExxCXtkyKgq0lwqvr_ZIUsZUDogRzG-UkoZF3BIBryQNJNQDMn1LJgmOmy6xC6Mj4lrkm6BydQHbD7Tbt1iUps2-XDdImkxOF86m1Q-WNe8HJODyiwjnuzmiDzf3c4mD-n06f5xcjNNrQDo0jIHAWhyFAUCCFkoiqYS_b9lJg2gMnaeI6fAZYl5ls8lR6lEqQBKKAoQI3K-zW2Df1th7HTtosXl0jToV1FzyqlSWX-spxdbaoOPMWCl2-BqE9aaUb0pSzO9K6u3Z7vY1bzG8kd-t9ODyy2I1nWmc775N-1P_O7DL9RtWYkvo65-dA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Maslennikov, Oleg V.</creator><creator>Nekorkin, Vladimir I.</creator><creator>Kurths, Jürgen</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid><orcidid>https://orcid.org/000000030173587X</orcidid><orcidid>https://orcid.org/000000028909321X</orcidid><orcidid>https://orcid.org/0000000259264276</orcidid></search><sort><creationdate>201803</creationdate><title>Transient chaos in the Lorenz-type map with periodic forcing</title><author>Maslennikov, Oleg V. ; Nekorkin, Vladimir I. ; Kurths, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d7535ea7e39e5536980eaf3265d46a5e8acb7e20526de747b62e683d855d59953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslennikov, Oleg V.</au><au>Nekorkin, Vladimir I.</au><au>Kurths, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient chaos in the Lorenz-type map with periodic forcing</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-03</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>033107</spage><epage>033107</epage><pages>033107-033107</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.</abstract><cop>United States</cop><pmid>29604659</pmid><doi>10.1063/1.5018265</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid><orcidid>https://orcid.org/000000030173587X</orcidid><orcidid>https://orcid.org/000000028909321X</orcidid><orcidid>https://orcid.org/0000000259264276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2018-03, Vol.28 (3), p.033107-033107
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2020884355
source AIP Journals Complete; Alma/SFX Local Collection
title Transient chaos in the Lorenz-type map with periodic forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20chaos%20in%20the%20Lorenz-type%20map%20with%20periodic%20forcing&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Maslennikov,%20Oleg%20V.&rft.date=2018-03&rft.volume=28&rft.issue=3&rft.spage=033107&rft.epage=033107&rft.pages=033107-033107&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5018265&rft_dat=%3Cproquest_cross%3E2020884355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020884355&rft_id=info:pmid/29604659&rfr_iscdi=true