Self-heating-induced healing of lithium dendrites

Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-03, Vol.359 (6383), p.1513-1516
Hauptverfasser: Li, Lu, Basu, Swastik, Wang, Yiping, Chen, Zhizhong, Hundekar, Prateek, Wang, Baiwei, Shi, Jian, Shi, Yunfeng, Narayanan, Shankar, Koratkar, Nikhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 6383
container_start_page 1513
container_title Science (American Association for the Advancement of Science)
container_volume 359
creator Li, Lu
Basu, Swastik
Wang, Yiping
Chen, Zhizhong
Hundekar, Prateek
Wang, Baiwei
Shi, Jian
Shi, Yunfeng
Narayanan, Shankar
Koratkar, Nikhil
description Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.
doi_str_mv 10.1126/science.aap8787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020492904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020492904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws6FILCxpbcdJ7BFV5UOqxADMkXM-U1f5KHYy8O8xamBgOr26516dHkKuGV0yxotVAIcd4FLrgyxleULmjKo8VZxmp2ROaVakkpb5jFyEsKc07lR2TmY8TsUFmxP2io1Nd6gH132krjMjoElibmJOeps0bti5sU0Mdsa7AcMlObO6CXg1zQV5f9i8rZ_S7cvj8_p-m4Io1JDyTOaA2irLrco5AC8oQC0kMqqtlQAllIXWrGBKc2NrlLoWnMnMCKMMZAtyd-w9-P5zxDBUrQuATaM77MdQccqpUFxREdHbf-i-H30Xv4sUU7IUvCgjtTpS4PsQPNrq4F2r_VfFaPVjs5psVpPNeHEz9Y51i-aP_9WXfQN0dnJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019874267</pqid></control><display><type>article</type><title>Self-heating-induced healing of lithium dendrites</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</creator><creatorcontrib>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</creatorcontrib><description>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aap8787</identifier><identifier>PMID: 29599241</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Batteries ; Current density ; Dendrites ; Electrochemistry ; Healing ; Heat ; Heating ; High current ; Lithium ; Lithium batteries ; Metals ; Rechargeable batteries ; Stripping ; Sulfur ; Surface diffusion</subject><ispartof>Science (American Association for the Advancement of Science), 2018-03, Vol.359 (6383), p.1513-1516</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</citedby><cites>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</cites><orcidid>0000-0003-1208-3432 ; 0000-0002-4118-8826 ; 0000-0001-6325-8736 ; 0000-0002-4080-3786 ; 0000-0001-7626-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29599241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Basu, Swastik</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Hundekar, Prateek</creatorcontrib><creatorcontrib>Wang, Baiwei</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><title>Self-heating-induced healing of lithium dendrites</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</description><subject>Batteries</subject><subject>Current density</subject><subject>Dendrites</subject><subject>Electrochemistry</subject><subject>Healing</subject><subject>Heat</subject><subject>Heating</subject><subject>High current</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metals</subject><subject>Rechargeable batteries</subject><subject>Stripping</subject><subject>Sulfur</subject><subject>Surface diffusion</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqUws6FILCxpbcdJ7BFV5UOqxADMkXM-U1f5KHYy8O8xamBgOr26516dHkKuGV0yxotVAIcd4FLrgyxleULmjKo8VZxmp2ROaVakkpb5jFyEsKc07lR2TmY8TsUFmxP2io1Nd6gH132krjMjoElibmJOeps0bti5sU0Mdsa7AcMlObO6CXg1zQV5f9i8rZ_S7cvj8_p-m4Io1JDyTOaA2irLrco5AC8oQC0kMqqtlQAllIXWrGBKc2NrlLoWnMnMCKMMZAtyd-w9-P5zxDBUrQuATaM77MdQccqpUFxREdHbf-i-H30Xv4sUU7IUvCgjtTpS4PsQPNrq4F2r_VfFaPVjs5psVpPNeHEz9Y51i-aP_9WXfQN0dnJS</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Li, Lu</creator><creator>Basu, Swastik</creator><creator>Wang, Yiping</creator><creator>Chen, Zhizhong</creator><creator>Hundekar, Prateek</creator><creator>Wang, Baiwei</creator><creator>Shi, Jian</creator><creator>Shi, Yunfeng</creator><creator>Narayanan, Shankar</creator><creator>Koratkar, Nikhil</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1208-3432</orcidid><orcidid>https://orcid.org/0000-0002-4118-8826</orcidid><orcidid>https://orcid.org/0000-0001-6325-8736</orcidid><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid><orcidid>https://orcid.org/0000-0001-7626-3278</orcidid></search><sort><creationdate>20180330</creationdate><title>Self-heating-induced healing of lithium dendrites</title><author>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Current density</topic><topic>Dendrites</topic><topic>Electrochemistry</topic><topic>Healing</topic><topic>Heat</topic><topic>Heating</topic><topic>High current</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metals</topic><topic>Rechargeable batteries</topic><topic>Stripping</topic><topic>Sulfur</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Basu, Swastik</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Hundekar, Prateek</creatorcontrib><creatorcontrib>Wang, Baiwei</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lu</au><au>Basu, Swastik</au><au>Wang, Yiping</au><au>Chen, Zhizhong</au><au>Hundekar, Prateek</au><au>Wang, Baiwei</au><au>Shi, Jian</au><au>Shi, Yunfeng</au><au>Narayanan, Shankar</au><au>Koratkar, Nikhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-heating-induced healing of lithium dendrites</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>359</volume><issue>6383</issue><spage>1513</spage><epage>1516</epage><pages>1513-1516</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29599241</pmid><doi>10.1126/science.aap8787</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1208-3432</orcidid><orcidid>https://orcid.org/0000-0002-4118-8826</orcidid><orcidid>https://orcid.org/0000-0001-6325-8736</orcidid><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid><orcidid>https://orcid.org/0000-0001-7626-3278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-03, Vol.359 (6383), p.1513-1516
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2020492904
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Batteries
Current density
Dendrites
Electrochemistry
Healing
Heat
Heating
High current
Lithium
Lithium batteries
Metals
Rechargeable batteries
Stripping
Sulfur
Surface diffusion
title Self-heating-induced healing of lithium dendrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-heating-induced%20healing%20of%20lithium%20dendrites&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Li,%20Lu&rft.date=2018-03-30&rft.volume=359&rft.issue=6383&rft.spage=1513&rft.epage=1516&rft.pages=1513-1516&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aap8787&rft_dat=%3Cproquest_cross%3E2020492904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019874267&rft_id=info:pmid/29599241&rfr_iscdi=true