Self-heating-induced healing of lithium dendrites
Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at hig...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-03, Vol.359 (6383), p.1513-1516 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516 |
---|---|
container_issue | 6383 |
container_start_page | 1513 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 359 |
creator | Li, Lu Basu, Swastik Wang, Yiping Chen, Zhizhong Hundekar, Prateek Wang, Baiwei Shi, Jian Shi, Yunfeng Narayanan, Shankar Koratkar, Nikhil |
description | Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency. |
doi_str_mv | 10.1126/science.aap8787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020492904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020492904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUws6FILCxpbcdJ7BFV5UOqxADMkXM-U1f5KHYy8O8xamBgOr26516dHkKuGV0yxotVAIcd4FLrgyxleULmjKo8VZxmp2ROaVakkpb5jFyEsKc07lR2TmY8TsUFmxP2io1Nd6gH132krjMjoElibmJOeps0bti5sU0Mdsa7AcMlObO6CXg1zQV5f9i8rZ_S7cvj8_p-m4Io1JDyTOaA2irLrco5AC8oQC0kMqqtlQAllIXWrGBKc2NrlLoWnMnMCKMMZAtyd-w9-P5zxDBUrQuATaM77MdQccqpUFxREdHbf-i-H30Xv4sUU7IUvCgjtTpS4PsQPNrq4F2r_VfFaPVjs5psVpPNeHEz9Y51i-aP_9WXfQN0dnJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019874267</pqid></control><display><type>article</type><title>Self-heating-induced healing of lithium dendrites</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</creator><creatorcontrib>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</creatorcontrib><description>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aap8787</identifier><identifier>PMID: 29599241</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Batteries ; Current density ; Dendrites ; Electrochemistry ; Healing ; Heat ; Heating ; High current ; Lithium ; Lithium batteries ; Metals ; Rechargeable batteries ; Stripping ; Sulfur ; Surface diffusion</subject><ispartof>Science (American Association for the Advancement of Science), 2018-03, Vol.359 (6383), p.1513-1516</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</citedby><cites>FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</cites><orcidid>0000-0003-1208-3432 ; 0000-0002-4118-8826 ; 0000-0001-6325-8736 ; 0000-0002-4080-3786 ; 0000-0001-7626-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29599241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Basu, Swastik</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Hundekar, Prateek</creatorcontrib><creatorcontrib>Wang, Baiwei</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><title>Self-heating-induced healing of lithium dendrites</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</description><subject>Batteries</subject><subject>Current density</subject><subject>Dendrites</subject><subject>Electrochemistry</subject><subject>Healing</subject><subject>Heat</subject><subject>Heating</subject><subject>High current</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metals</subject><subject>Rechargeable batteries</subject><subject>Stripping</subject><subject>Sulfur</subject><subject>Surface diffusion</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqUws6FILCxpbcdJ7BFV5UOqxADMkXM-U1f5KHYy8O8xamBgOr26516dHkKuGV0yxotVAIcd4FLrgyxleULmjKo8VZxmp2ROaVakkpb5jFyEsKc07lR2TmY8TsUFmxP2io1Nd6gH132krjMjoElibmJOeps0bti5sU0Mdsa7AcMlObO6CXg1zQV5f9i8rZ_S7cvj8_p-m4Io1JDyTOaA2irLrco5AC8oQC0kMqqtlQAllIXWrGBKc2NrlLoWnMnMCKMMZAtyd-w9-P5zxDBUrQuATaM77MdQccqpUFxREdHbf-i-H30Xv4sUU7IUvCgjtTpS4PsQPNrq4F2r_VfFaPVjs5psVpPNeHEz9Y51i-aP_9WXfQN0dnJS</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Li, Lu</creator><creator>Basu, Swastik</creator><creator>Wang, Yiping</creator><creator>Chen, Zhizhong</creator><creator>Hundekar, Prateek</creator><creator>Wang, Baiwei</creator><creator>Shi, Jian</creator><creator>Shi, Yunfeng</creator><creator>Narayanan, Shankar</creator><creator>Koratkar, Nikhil</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1208-3432</orcidid><orcidid>https://orcid.org/0000-0002-4118-8826</orcidid><orcidid>https://orcid.org/0000-0001-6325-8736</orcidid><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid><orcidid>https://orcid.org/0000-0001-7626-3278</orcidid></search><sort><creationdate>20180330</creationdate><title>Self-heating-induced healing of lithium dendrites</title><author>Li, Lu ; Basu, Swastik ; Wang, Yiping ; Chen, Zhizhong ; Hundekar, Prateek ; Wang, Baiwei ; Shi, Jian ; Shi, Yunfeng ; Narayanan, Shankar ; Koratkar, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-2385ceaf9f2f952cc260ccb48e10aff8cc7c76aa1619a2dfbe8ab42183d4d9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Current density</topic><topic>Dendrites</topic><topic>Electrochemistry</topic><topic>Healing</topic><topic>Heat</topic><topic>Heating</topic><topic>High current</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metals</topic><topic>Rechargeable batteries</topic><topic>Stripping</topic><topic>Sulfur</topic><topic>Surface diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Basu, Swastik</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Hundekar, Prateek</creatorcontrib><creatorcontrib>Wang, Baiwei</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Shi, Yunfeng</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Koratkar, Nikhil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lu</au><au>Basu, Swastik</au><au>Wang, Yiping</au><au>Chen, Zhizhong</au><au>Hundekar, Prateek</au><au>Wang, Baiwei</au><au>Shi, Jian</au><au>Shi, Yunfeng</au><au>Narayanan, Shankar</au><au>Koratkar, Nikhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-heating-induced healing of lithium dendrites</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>359</volume><issue>6383</issue><spage>1513</spage><epage>1516</epage><pages>1513-1516</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true. In our experiments, we found that when the plating and stripping current density is raised above ~9 milliamperes per square centimeter, there is substantial self-heating of the dendrites, which triggers extensive surface migration of Li. This surface diffusion heals the dendrites and smoothens the Li metal surface. We show that repeated doses of high-current-density healing treatment enables the safe cycling of Li-sulfur batteries with high coulombic efficiency.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29599241</pmid><doi>10.1126/science.aap8787</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1208-3432</orcidid><orcidid>https://orcid.org/0000-0002-4118-8826</orcidid><orcidid>https://orcid.org/0000-0001-6325-8736</orcidid><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid><orcidid>https://orcid.org/0000-0001-7626-3278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-03, Vol.359 (6383), p.1513-1516 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2020492904 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Batteries Current density Dendrites Electrochemistry Healing Heat Heating High current Lithium Lithium batteries Metals Rechargeable batteries Stripping Sulfur Surface diffusion |
title | Self-heating-induced healing of lithium dendrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-heating-induced%20healing%20of%20lithium%20dendrites&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Li,%20Lu&rft.date=2018-03-30&rft.volume=359&rft.issue=6383&rft.spage=1513&rft.epage=1516&rft.pages=1513-1516&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aap8787&rft_dat=%3Cproquest_cross%3E2020492904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019874267&rft_id=info:pmid/29599241&rfr_iscdi=true |