Factorization of the coherency matrix of polarization optics

We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590
Hauptverfasser: Sheppard, Colin J R, Le Gratiet, Aymeric, Diaspro, Alberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 586
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 35
creator Sheppard, Colin J R
Le Gratiet, Aymeric
Diaspro, Alberto
description We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.
doi_str_mv 10.1364/JOSAA.35.000586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020491234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020491234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EoqUws6GMLGntZye2JZaqonyoUgdgtlzHVoOSOtiuRPn1pLTAdJ-uzrvDQeia4DGhJZs8L1-m0zEtxhjjQpQnaEgKwLkoKJz2NxYs5wXIAbqI8b1nWCn4ORqALDGVjA7R3Vyb5EP9pVPtN5l3WVrbzPi1DXZjdlmrU6g_933nG_3Pdak28RKdOd1Ee3XMEXqb37_OHvPF8uFpNl3kBiRPeeE4s8xBRaWmHPNKOqGpWxlSCaiACRBGMrESJdcVZ6zE4Jg0WjIwlFBJR-j2sNsF_7G1Mam2jsY2jd5Yv40KMGAmCVDWo5MDaoKPMVinulC3OuwUwWqvTP0oU7RQB2X9x81xfLtqbfXH_zqi36J0Zk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020491234</pqid></control><display><type>article</type><title>Factorization of the coherency matrix of polarization optics</title><source>Optica Publishing Group Journals</source><creator>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</creator><creatorcontrib>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</creatorcontrib><description>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.35.000586</identifier><identifier>PMID: 29603943</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</citedby><cites>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</cites><orcidid>0000-0002-0792-4607 ; 0000-0002-4916-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29603943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheppard, Colin J R</creatorcontrib><creatorcontrib>Le Gratiet, Aymeric</creatorcontrib><creatorcontrib>Diaspro, Alberto</creatorcontrib><title>Factorization of the coherency matrix of polarization optics</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EoqUws6GMLGntZye2JZaqonyoUgdgtlzHVoOSOtiuRPn1pLTAdJ-uzrvDQeia4DGhJZs8L1-m0zEtxhjjQpQnaEgKwLkoKJz2NxYs5wXIAbqI8b1nWCn4ORqALDGVjA7R3Vyb5EP9pVPtN5l3WVrbzPi1DXZjdlmrU6g_933nG_3Pdak28RKdOd1Ee3XMEXqb37_OHvPF8uFpNl3kBiRPeeE4s8xBRaWmHPNKOqGpWxlSCaiACRBGMrESJdcVZ6zE4Jg0WjIwlFBJR-j2sNsF_7G1Mam2jsY2jd5Yv40KMGAmCVDWo5MDaoKPMVinulC3OuwUwWqvTP0oU7RQB2X9x81xfLtqbfXH_zqi36J0Zk4</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sheppard, Colin J R</creator><creator>Le Gratiet, Aymeric</creator><creator>Diaspro, Alberto</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0792-4607</orcidid><orcidid>https://orcid.org/0000-0002-4916-5928</orcidid></search><sort><creationdate>20180401</creationdate><title>Factorization of the coherency matrix of polarization optics</title><author>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheppard, Colin J R</creatorcontrib><creatorcontrib>Le Gratiet, Aymeric</creatorcontrib><creatorcontrib>Diaspro, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheppard, Colin J R</au><au>Le Gratiet, Aymeric</au><au>Diaspro, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorization of the coherency matrix of polarization optics</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</abstract><cop>United States</cop><pmid>29603943</pmid><doi>10.1364/JOSAA.35.000586</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0792-4607</orcidid><orcidid>https://orcid.org/0000-0002-4916-5928</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_2020491234
source Optica Publishing Group Journals
title Factorization of the coherency matrix of polarization optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorization%20of%20the%20coherency%20matrix%20of%20polarization%20optics&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Sheppard,%20Colin%20J%20R&rft.date=2018-04-01&rft.volume=35&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.35.000586&rft_dat=%3Cproquest_cross%3E2020491234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020491234&rft_id=info:pmid/29603943&rfr_iscdi=true