Factorization of the coherency matrix of polarization optics
We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 586 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 35 |
creator | Sheppard, Colin J R Le Gratiet, Aymeric Diaspro, Alberto |
description | We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot. |
doi_str_mv | 10.1364/JOSAA.35.000586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020491234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020491234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EoqUws6GMLGntZye2JZaqonyoUgdgtlzHVoOSOtiuRPn1pLTAdJ-uzrvDQeia4DGhJZs8L1-m0zEtxhjjQpQnaEgKwLkoKJz2NxYs5wXIAbqI8b1nWCn4ORqALDGVjA7R3Vyb5EP9pVPtN5l3WVrbzPi1DXZjdlmrU6g_933nG_3Pdak28RKdOd1Ee3XMEXqb37_OHvPF8uFpNl3kBiRPeeE4s8xBRaWmHPNKOqGpWxlSCaiACRBGMrESJdcVZ6zE4Jg0WjIwlFBJR-j2sNsF_7G1Mam2jsY2jd5Yv40KMGAmCVDWo5MDaoKPMVinulC3OuwUwWqvTP0oU7RQB2X9x81xfLtqbfXH_zqi36J0Zk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020491234</pqid></control><display><type>article</type><title>Factorization of the coherency matrix of polarization optics</title><source>Optica Publishing Group Journals</source><creator>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</creator><creatorcontrib>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</creatorcontrib><description>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.35.000586</identifier><identifier>PMID: 29603943</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</citedby><cites>FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</cites><orcidid>0000-0002-0792-4607 ; 0000-0002-4916-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29603943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheppard, Colin J R</creatorcontrib><creatorcontrib>Le Gratiet, Aymeric</creatorcontrib><creatorcontrib>Diaspro, Alberto</creatorcontrib><title>Factorization of the coherency matrix of polarization optics</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EoqUws6GMLGntZye2JZaqonyoUgdgtlzHVoOSOtiuRPn1pLTAdJ-uzrvDQeia4DGhJZs8L1-m0zEtxhjjQpQnaEgKwLkoKJz2NxYs5wXIAbqI8b1nWCn4ORqALDGVjA7R3Vyb5EP9pVPtN5l3WVrbzPi1DXZjdlmrU6g_933nG_3Pdak28RKdOd1Ee3XMEXqb37_OHvPF8uFpNl3kBiRPeeE4s8xBRaWmHPNKOqGpWxlSCaiACRBGMrESJdcVZ6zE4Jg0WjIwlFBJR-j2sNsF_7G1Mam2jsY2jd5Yv40KMGAmCVDWo5MDaoKPMVinulC3OuwUwWqvTP0oU7RQB2X9x81xfLtqbfXH_zqi36J0Zk4</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sheppard, Colin J R</creator><creator>Le Gratiet, Aymeric</creator><creator>Diaspro, Alberto</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0792-4607</orcidid><orcidid>https://orcid.org/0000-0002-4916-5928</orcidid></search><sort><creationdate>20180401</creationdate><title>Factorization of the coherency matrix of polarization optics</title><author>Sheppard, Colin J R ; Le Gratiet, Aymeric ; Diaspro, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-5f74e4f2d39a3707d9f8a3fbc1d82d24828c948b867ad744602f49ca942c31393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheppard, Colin J R</creatorcontrib><creatorcontrib>Le Gratiet, Aymeric</creatorcontrib><creatorcontrib>Diaspro, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheppard, Colin J R</au><au>Le Gratiet, Aymeric</au><au>Diaspro, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorization of the coherency matrix of polarization optics</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>35</volume><issue>4</issue><spage>586</spage><epage>590</epage><pages>586-590</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.</abstract><cop>United States</cop><pmid>29603943</pmid><doi>10.1364/JOSAA.35.000586</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0792-4607</orcidid><orcidid>https://orcid.org/0000-0002-4916-5928</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2018-04, Vol.35 (4), p.586-590 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_2020491234 |
source | Optica Publishing Group Journals |
title | Factorization of the coherency matrix of polarization optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorization%20of%20the%20coherency%20matrix%20of%20polarization%20optics&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Sheppard,%20Colin%20J%20R&rft.date=2018-04-01&rft.volume=35&rft.issue=4&rft.spage=586&rft.epage=590&rft.pages=586-590&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.35.000586&rft_dat=%3Cproquest_cross%3E2020491234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020491234&rft_id=info:pmid/29603943&rfr_iscdi=true |