A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure
An aerolysin nanopore is employed as a sensitive tool for single‐molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G‐quadruplex topology) remai...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-05, Vol.14 (18), p.e1704520-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e1704520 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Liao, Dong‐Fang Cao, Chan Ying, Yi‐Lun Long, Yi‐Tao |
description | An aerolysin nanopore is employed as a sensitive tool for single‐molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G‐quadruplex topology) remains a challenge, which impedes the further practical applications of the aerolysin nanopore. Here, a simple and applicable method of aerolysin nanopore is presented to achieve a direct analysis of structured oligonucleotides that are extended to 30 nucleotides long by a cation‐regulation mechanism. By regulating the cation type in electrolyte solution, the structured oligonucleotides are unfolded into linear form which ensures the successive translocation. The results show that each model oligonucleotide of 5′‐(TTAGGG)n‐3′ can produce a well‐resolved current blockade in its unfolded solution of MgCl2. The length between 6 and 30 nucleotides long of model oligonucleotides is proportional to the duration time, showing a translocation velocity as low as 0.70–0.13 ms nt−1 at +140 mV. This method exhibits an excellent sensitivity and a sufficient temporal resolution, provides insight into the aerolysin nanopore methodology for genetic and epigenetic biosensing, making aerolysin applicable in practical diagnosing with long and structured nucleic acids.
The aerolysin‐based direct analysis of oligonucleotides with the secondary structure (e.g., G‐quadruplex) remains a challenge. Here, a novel strategy of aerolysin nanopore is presented to analyze structured oligonucleotides that are extended to 30 bases long by a cation‐regulation mechanism. This method can in principle guide to achieve genetic application of the aerolysin nanopore. |
doi_str_mv | 10.1002/smll.201704520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020490847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020490847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-474e711595782831750c3f11b630847f84f350284626d50becedac0911265213</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMiJLLCwtZztxkrHioyAVOrR7lDqXNpUTF9tRlX9PqpYisTDdDc89eu8l5JbBiAHwR1dpPeLAIghCDmekzyQTQxnz5Py0M-iRK-c2AILxILokPZ5IEBKSPsnHdII12kzTubeZx1VLTUHHaI1uXVnTz6w2W2ORPqNH5UtT08JYOtPlytSN0mh8maOju9KvqV8jnaMydZ7Zdi9slG8sXpOLItMOb45zQBavL4unt-F0Nnl_Gk-HSkQChkEUYMRYmIRRzGPBohCUKBhbSgFxEBVxUIgQeBxILvMQlqgwzxQkjHEZciYG5OGg3Vrz1aDzaVU6hVpnNZrGpRw4BMle1aH3f9CNaWzdheso0aUJZZx01OhAKWucs1ikW1tW3Wspg3Rff7qvPz3V3x3cHbXNssL8hP_03QHJAdiVGtt_dOn8Yzr9lX8DsNmP-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033735689</pqid></control><display><type>article</type><title>A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure</title><source>Access via Wiley Online Library</source><creator>Liao, Dong‐Fang ; Cao, Chan ; Ying, Yi‐Lun ; Long, Yi‐Tao</creator><creatorcontrib>Liao, Dong‐Fang ; Cao, Chan ; Ying, Yi‐Lun ; Long, Yi‐Tao</creatorcontrib><description>An aerolysin nanopore is employed as a sensitive tool for single‐molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G‐quadruplex topology) remains a challenge, which impedes the further practical applications of the aerolysin nanopore. Here, a simple and applicable method of aerolysin nanopore is presented to achieve a direct analysis of structured oligonucleotides that are extended to 30 nucleotides long by a cation‐regulation mechanism. By regulating the cation type in electrolyte solution, the structured oligonucleotides are unfolded into linear form which ensures the successive translocation. The results show that each model oligonucleotide of 5′‐(TTAGGG)n‐3′ can produce a well‐resolved current blockade in its unfolded solution of MgCl2. The length between 6 and 30 nucleotides long of model oligonucleotides is proportional to the duration time, showing a translocation velocity as low as 0.70–0.13 ms nt−1 at +140 mV. This method exhibits an excellent sensitivity and a sufficient temporal resolution, provides insight into the aerolysin nanopore methodology for genetic and epigenetic biosensing, making aerolysin applicable in practical diagnosing with long and structured nucleic acids.
The aerolysin‐based direct analysis of oligonucleotides with the secondary structure (e.g., G‐quadruplex) remains a challenge. Here, a novel strategy of aerolysin nanopore is presented to analyze structured oligonucleotides that are extended to 30 bases long by a cation‐regulation mechanism. This method can in principle guide to achieve genetic application of the aerolysin nanopore.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201704520</identifier><identifier>PMID: 29603609</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aerolysin ; Cations ; Magnesium chloride ; Molecular chains ; nanopores ; Nanotechnology ; Nucleic acids ; Nucleotides ; Oligonucleotides ; Peptides ; Polyethylene glycol ; Porosity ; Proteins ; single‐molecule detection ; Temporal resolution</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-05, Vol.14 (18), p.e1704520-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-474e711595782831750c3f11b630847f84f350284626d50becedac0911265213</citedby><cites>FETCH-LOGICAL-c3730-474e711595782831750c3f11b630847f84f350284626d50becedac0911265213</cites><orcidid>0000-0001-6217-256X ; 0000-0003-2571-7457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201704520$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201704520$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29603609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Dong‐Fang</creatorcontrib><creatorcontrib>Cao, Chan</creatorcontrib><creatorcontrib>Ying, Yi‐Lun</creatorcontrib><creatorcontrib>Long, Yi‐Tao</creatorcontrib><title>A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>An aerolysin nanopore is employed as a sensitive tool for single‐molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G‐quadruplex topology) remains a challenge, which impedes the further practical applications of the aerolysin nanopore. Here, a simple and applicable method of aerolysin nanopore is presented to achieve a direct analysis of structured oligonucleotides that are extended to 30 nucleotides long by a cation‐regulation mechanism. By regulating the cation type in electrolyte solution, the structured oligonucleotides are unfolded into linear form which ensures the successive translocation. The results show that each model oligonucleotide of 5′‐(TTAGGG)n‐3′ can produce a well‐resolved current blockade in its unfolded solution of MgCl2. The length between 6 and 30 nucleotides long of model oligonucleotides is proportional to the duration time, showing a translocation velocity as low as 0.70–0.13 ms nt−1 at +140 mV. This method exhibits an excellent sensitivity and a sufficient temporal resolution, provides insight into the aerolysin nanopore methodology for genetic and epigenetic biosensing, making aerolysin applicable in practical diagnosing with long and structured nucleic acids.
The aerolysin‐based direct analysis of oligonucleotides with the secondary structure (e.g., G‐quadruplex) remains a challenge. Here, a novel strategy of aerolysin nanopore is presented to analyze structured oligonucleotides that are extended to 30 bases long by a cation‐regulation mechanism. This method can in principle guide to achieve genetic application of the aerolysin nanopore.</description><subject>aerolysin</subject><subject>Cations</subject><subject>Magnesium chloride</subject><subject>Molecular chains</subject><subject>nanopores</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Peptides</subject><subject>Polyethylene glycol</subject><subject>Porosity</subject><subject>Proteins</subject><subject>single‐molecule detection</subject><subject>Temporal resolution</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EoqWwMiJLLCwtZztxkrHioyAVOrR7lDqXNpUTF9tRlX9PqpYisTDdDc89eu8l5JbBiAHwR1dpPeLAIghCDmekzyQTQxnz5Py0M-iRK-c2AILxILokPZ5IEBKSPsnHdII12kzTubeZx1VLTUHHaI1uXVnTz6w2W2ORPqNH5UtT08JYOtPlytSN0mh8maOju9KvqV8jnaMydZ7Zdi9slG8sXpOLItMOb45zQBavL4unt-F0Nnl_Gk-HSkQChkEUYMRYmIRRzGPBohCUKBhbSgFxEBVxUIgQeBxILvMQlqgwzxQkjHEZciYG5OGg3Vrz1aDzaVU6hVpnNZrGpRw4BMle1aH3f9CNaWzdheso0aUJZZx01OhAKWucs1ikW1tW3Wspg3Rff7qvPz3V3x3cHbXNssL8hP_03QHJAdiVGtt_dOn8Yzr9lX8DsNmP-g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Liao, Dong‐Fang</creator><creator>Cao, Chan</creator><creator>Ying, Yi‐Lun</creator><creator>Long, Yi‐Tao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6217-256X</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid></search><sort><creationdate>201805</creationdate><title>A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure</title><author>Liao, Dong‐Fang ; Cao, Chan ; Ying, Yi‐Lun ; Long, Yi‐Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-474e711595782831750c3f11b630847f84f350284626d50becedac0911265213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aerolysin</topic><topic>Cations</topic><topic>Magnesium chloride</topic><topic>Molecular chains</topic><topic>nanopores</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Peptides</topic><topic>Polyethylene glycol</topic><topic>Porosity</topic><topic>Proteins</topic><topic>single‐molecule detection</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Dong‐Fang</creatorcontrib><creatorcontrib>Cao, Chan</creatorcontrib><creatorcontrib>Ying, Yi‐Lun</creatorcontrib><creatorcontrib>Long, Yi‐Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Dong‐Fang</au><au>Cao, Chan</au><au>Ying, Yi‐Lun</au><au>Long, Yi‐Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-05</date><risdate>2018</risdate><volume>14</volume><issue>18</issue><spage>e1704520</spage><epage>n/a</epage><pages>e1704520-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>An aerolysin nanopore is employed as a sensitive tool for single‐molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G‐quadruplex topology) remains a challenge, which impedes the further practical applications of the aerolysin nanopore. Here, a simple and applicable method of aerolysin nanopore is presented to achieve a direct analysis of structured oligonucleotides that are extended to 30 nucleotides long by a cation‐regulation mechanism. By regulating the cation type in electrolyte solution, the structured oligonucleotides are unfolded into linear form which ensures the successive translocation. The results show that each model oligonucleotide of 5′‐(TTAGGG)n‐3′ can produce a well‐resolved current blockade in its unfolded solution of MgCl2. The length between 6 and 30 nucleotides long of model oligonucleotides is proportional to the duration time, showing a translocation velocity as low as 0.70–0.13 ms nt−1 at +140 mV. This method exhibits an excellent sensitivity and a sufficient temporal resolution, provides insight into the aerolysin nanopore methodology for genetic and epigenetic biosensing, making aerolysin applicable in practical diagnosing with long and structured nucleic acids.
The aerolysin‐based direct analysis of oligonucleotides with the secondary structure (e.g., G‐quadruplex) remains a challenge. Here, a novel strategy of aerolysin nanopore is presented to analyze structured oligonucleotides that are extended to 30 bases long by a cation‐regulation mechanism. This method can in principle guide to achieve genetic application of the aerolysin nanopore.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29603609</pmid><doi>10.1002/smll.201704520</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6217-256X</orcidid><orcidid>https://orcid.org/0000-0003-2571-7457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-05, Vol.14 (18), p.e1704520-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2020490847 |
source | Access via Wiley Online Library |
subjects | aerolysin Cations Magnesium chloride Molecular chains nanopores Nanotechnology Nucleic acids Nucleotides Oligonucleotides Peptides Polyethylene glycol Porosity Proteins single‐molecule detection Temporal resolution |
title | A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Strategy%20of%20Aerolysin%20Nanopore%20Detection%20for%20Oligonucleotides%20with%20the%20Secondary%20Structure&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liao,%20Dong%E2%80%90Fang&rft.date=2018-05&rft.volume=14&rft.issue=18&rft.spage=e1704520&rft.epage=n/a&rft.pages=e1704520-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201704520&rft_dat=%3Cproquest_cross%3E2020490847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033735689&rft_id=info:pmid/29603609&rfr_iscdi=true |