Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture

We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2018-03, Vol.57 (9), p.2142-2149
Hauptverfasser: Diebold, Aaron V, Imani, Mohammadreza F, Sleasman, Timothy, Smith, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2149
container_issue 9
container_start_page 2142
container_title Applied optics (2004)
container_volume 57
creator Diebold, Aaron V
Imani, Mohammadreza F
Sleasman, Timothy
Smith, David R
description We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.
doi_str_mv 10.1364/AO.57.002142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020490329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056461689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlZ3riXgxoVT855mWYovKNSFgrshk960U-ZlMqP035va6sLV_eAePu49CF1SMqZcibvpYizTMSGMCnaEhoxKmXCq5DEaxqgTyibvA3QWwoYQLoVOT9GAaUUEoWSI7MvaBCghBGybqu070xVNbUq8Wjehw0VlVkW9wqbDVWF982U-ATsPHz3UtoCA-_CzxsttbSKBK-hM6L0zFrBpwXe9h3N04kwZ4OIwR-jt4f519pTMF4_Ps-k8sVymXbJ0FMBNNOVCcWeFlSmRQoF2QuuJZkTwVBpmieXGsdymSuQxKamFzSHmEbrZ97a-iQeGLquKYKEsTQ1NHzJGYocmnOmIXv9DN03v4987SiqhqJrsqNs9FT8PwYPLWh-N-G1GSbaTn00XmUyzvfyIXx1K-7yC5R_8a5t_A_atf-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056461689</pqid></control><display><type>article</type><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</creator><creatorcontrib>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</creatorcontrib><description>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.57.002142</identifier><identifier>PMID: 29604010</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Backscattering ; Computation ; Imaging ; Metamaterials ; Metasurfaces ; Microwave frequencies ; Software ; Target recognition ; Tuning</subject><ispartof>Applied optics (2004), 2018-03, Vol.57 (9), p.2142-2149</ispartof><rights>Copyright Optical Society of America Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</citedby><cites>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</cites><orcidid>0000-0003-2619-6358 ; 0000-0001-9864-9403 ; 0000-0002-1448-817X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29604010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diebold, Aaron V</creatorcontrib><creatorcontrib>Imani, Mohammadreza F</creatorcontrib><creatorcontrib>Sleasman, Timothy</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</description><subject>Backscattering</subject><subject>Computation</subject><subject>Imaging</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Microwave frequencies</subject><subject>Software</subject><subject>Target recognition</subject><subject>Tuning</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEURoMotlZ3riXgxoVT855mWYovKNSFgrshk960U-ZlMqP035va6sLV_eAePu49CF1SMqZcibvpYizTMSGMCnaEhoxKmXCq5DEaxqgTyibvA3QWwoYQLoVOT9GAaUUEoWSI7MvaBCghBGybqu070xVNbUq8Wjehw0VlVkW9wqbDVWF982U-ATsPHz3UtoCA-_CzxsttbSKBK-hM6L0zFrBpwXe9h3N04kwZ4OIwR-jt4f519pTMF4_Ps-k8sVymXbJ0FMBNNOVCcWeFlSmRQoF2QuuJZkTwVBpmieXGsdymSuQxKamFzSHmEbrZ97a-iQeGLquKYKEsTQ1NHzJGYocmnOmIXv9DN03v4987SiqhqJrsqNs9FT8PwYPLWh-N-G1GSbaTn00XmUyzvfyIXx1K-7yC5R_8a5t_A_atf-0</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Diebold, Aaron V</creator><creator>Imani, Mohammadreza F</creator><creator>Sleasman, Timothy</creator><creator>Smith, David R</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2619-6358</orcidid><orcidid>https://orcid.org/0000-0001-9864-9403</orcidid><orcidid>https://orcid.org/0000-0002-1448-817X</orcidid></search><sort><creationdate>20180320</creationdate><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><author>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backscattering</topic><topic>Computation</topic><topic>Imaging</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Microwave frequencies</topic><topic>Software</topic><topic>Target recognition</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Aaron V</creatorcontrib><creatorcontrib>Imani, Mohammadreza F</creatorcontrib><creatorcontrib>Sleasman, Timothy</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Aaron V</au><au>Imani, Mohammadreza F</au><au>Sleasman, Timothy</au><au>Smith, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>57</volume><issue>9</issue><spage>2142</spage><epage>2149</epage><pages>2142-2149</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29604010</pmid><doi>10.1364/AO.57.002142</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2619-6358</orcidid><orcidid>https://orcid.org/0000-0001-9864-9403</orcidid><orcidid>https://orcid.org/0000-0002-1448-817X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2018-03, Vol.57 (9), p.2142-2149
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2020490329
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Backscattering
Computation
Imaging
Metamaterials
Metasurfaces
Microwave frequencies
Software
Target recognition
Tuning
title Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phaseless%20computational%20ghost%20imaging%20at%20microwave%20frequencies%20using%20a%20dynamic%20metasurface%20aperture&rft.jtitle=Applied%20optics%20(2004)&rft.au=Diebold,%20Aaron%20V&rft.date=2018-03-20&rft.volume=57&rft.issue=9&rft.spage=2142&rft.epage=2149&rft.pages=2142-2149&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.57.002142&rft_dat=%3Cproquest_cross%3E2056461689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056461689&rft_id=info:pmid/29604010&rfr_iscdi=true