Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture
We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2018-03, Vol.57 (9), p.2142-2149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2149 |
---|---|
container_issue | 9 |
container_start_page | 2142 |
container_title | Applied optics (2004) |
container_volume | 57 |
creator | Diebold, Aaron V Imani, Mohammadreza F Sleasman, Timothy Smith, David R |
description | We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics. |
doi_str_mv | 10.1364/AO.57.002142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2020490329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056461689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlZ3riXgxoVT855mWYovKNSFgrshk960U-ZlMqP035va6sLV_eAePu49CF1SMqZcibvpYizTMSGMCnaEhoxKmXCq5DEaxqgTyibvA3QWwoYQLoVOT9GAaUUEoWSI7MvaBCghBGybqu070xVNbUq8Wjehw0VlVkW9wqbDVWF982U-ATsPHz3UtoCA-_CzxsttbSKBK-hM6L0zFrBpwXe9h3N04kwZ4OIwR-jt4f519pTMF4_Ps-k8sVymXbJ0FMBNNOVCcWeFlSmRQoF2QuuJZkTwVBpmieXGsdymSuQxKamFzSHmEbrZ97a-iQeGLquKYKEsTQ1NHzJGYocmnOmIXv9DN03v4987SiqhqJrsqNs9FT8PwYPLWh-N-G1GSbaTn00XmUyzvfyIXx1K-7yC5R_8a5t_A_atf-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056461689</pqid></control><display><type>article</type><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</creator><creatorcontrib>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</creatorcontrib><description>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.57.002142</identifier><identifier>PMID: 29604010</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Backscattering ; Computation ; Imaging ; Metamaterials ; Metasurfaces ; Microwave frequencies ; Software ; Target recognition ; Tuning</subject><ispartof>Applied optics (2004), 2018-03, Vol.57 (9), p.2142-2149</ispartof><rights>Copyright Optical Society of America Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</citedby><cites>FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</cites><orcidid>0000-0003-2619-6358 ; 0000-0001-9864-9403 ; 0000-0002-1448-817X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29604010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diebold, Aaron V</creatorcontrib><creatorcontrib>Imani, Mohammadreza F</creatorcontrib><creatorcontrib>Sleasman, Timothy</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</description><subject>Backscattering</subject><subject>Computation</subject><subject>Imaging</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Microwave frequencies</subject><subject>Software</subject><subject>Target recognition</subject><subject>Tuning</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEURoMotlZ3riXgxoVT855mWYovKNSFgrshk960U-ZlMqP035va6sLV_eAePu49CF1SMqZcibvpYizTMSGMCnaEhoxKmXCq5DEaxqgTyibvA3QWwoYQLoVOT9GAaUUEoWSI7MvaBCghBGybqu070xVNbUq8Wjehw0VlVkW9wqbDVWF982U-ATsPHz3UtoCA-_CzxsttbSKBK-hM6L0zFrBpwXe9h3N04kwZ4OIwR-jt4f519pTMF4_Ps-k8sVymXbJ0FMBNNOVCcWeFlSmRQoF2QuuJZkTwVBpmieXGsdymSuQxKamFzSHmEbrZ97a-iQeGLquKYKEsTQ1NHzJGYocmnOmIXv9DN03v4987SiqhqJrsqNs9FT8PwYPLWh-N-G1GSbaTn00XmUyzvfyIXx1K-7yC5R_8a5t_A_atf-0</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Diebold, Aaron V</creator><creator>Imani, Mohammadreza F</creator><creator>Sleasman, Timothy</creator><creator>Smith, David R</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2619-6358</orcidid><orcidid>https://orcid.org/0000-0001-9864-9403</orcidid><orcidid>https://orcid.org/0000-0002-1448-817X</orcidid></search><sort><creationdate>20180320</creationdate><title>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</title><author>Diebold, Aaron V ; Imani, Mohammadreza F ; Sleasman, Timothy ; Smith, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-df1eef8913463fc4c570546e9f49989204375a2c0c3af2bc764b3af6594cbe4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backscattering</topic><topic>Computation</topic><topic>Imaging</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Microwave frequencies</topic><topic>Software</topic><topic>Target recognition</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Aaron V</creatorcontrib><creatorcontrib>Imani, Mohammadreza F</creatorcontrib><creatorcontrib>Sleasman, Timothy</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Aaron V</au><au>Imani, Mohammadreza F</au><au>Sleasman, Timothy</au><au>Smith, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>57</volume><issue>9</issue><spage>2142</spage><epage>2149</epage><pages>2142-2149</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29604010</pmid><doi>10.1364/AO.57.002142</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2619-6358</orcidid><orcidid>https://orcid.org/0000-0001-9864-9403</orcidid><orcidid>https://orcid.org/0000-0002-1448-817X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2018-03, Vol.57 (9), p.2142-2149 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2020490329 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Backscattering Computation Imaging Metamaterials Metasurfaces Microwave frequencies Software Target recognition Tuning |
title | Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phaseless%20computational%20ghost%20imaging%20at%20microwave%20frequencies%20using%20a%20dynamic%20metasurface%20aperture&rft.jtitle=Applied%20optics%20(2004)&rft.au=Diebold,%20Aaron%20V&rft.date=2018-03-20&rft.volume=57&rft.issue=9&rft.spage=2142&rft.epage=2149&rft.pages=2142-2149&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.57.002142&rft_dat=%3Cproquest_cross%3E2056461689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056461689&rft_id=info:pmid/29604010&rfr_iscdi=true |