Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study
Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease prog...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2018-07, Vol.46 (7), p.927-939 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 939 |
---|---|
container_issue | 7 |
container_start_page | 927 |
container_title | Annals of biomedical engineering |
container_volume | 46 |
creator | Xu, Huijuan Piccinelli, Marina Leshnower, Bradley G. Lefieux, Adrien Taylor, W. Robert Veneziani, Alessandro |
description | Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications. |
doi_str_mv | 10.1007/s10439-018-2012-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2019811650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019811650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5f5a901185092a2b350a41e890f0cac7e039ff8a263b7947543aa71ca9746b133</originalsourceid><addsrcrecordid>eNp1kbtu3DAQRQkjgb1-fICbgEAaN3KGL4lMt16_AmzgwnYtcLnUhoYkKqRUyJX_IX_oLwkF2QkQIM1wAJ57ZzAXoVMC5wSg-BIJcKYyIDKjQGj2vIcWRBQsU7nMP6AFgIIsVzk_QIcxPgEQIpnYRwdUCcVzKReoXvmhq-0Wf_eh--Frv3NG168vv25t47djqxtn8Mo33dDr3vlW13iZyhhdxL7CD2Nn8QVe-tAn7tLFaM2EfcVLvPbtzvXD1k2i-9SMx-hjpetoT97eI_R4ffWwus3WdzffVst1ZjiTfSYqodW0qwBFNd0wAZoTKxVUYLQpLDBVVVLTnG0KxQvBmdYFMVoVPN8Qxo7Q2ezbBf9zsLEvGxeNrWvdWj_EMh1LSUJyAQn9_A_65IeQNp4poigvaKLITJngYwy2KrvgGh3GkkA5RVHOUZQpiklHy-ek-fTmPGwau_2jeL99AugMxPTV7mz4O_r_rr8Bn9eU9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019192472</pqid></control><display><type>article</type><title>Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Xu, Huijuan ; Piccinelli, Marina ; Leshnower, Bradley G. ; Lefieux, Adrien ; Taylor, W. Robert ; Veneziani, Alessandro</creator><creatorcontrib>Xu, Huijuan ; Piccinelli, Marina ; Leshnower, Bradley G. ; Lefieux, Adrien ; Taylor, W. Robert ; Veneziani, Alessandro</creatorcontrib><description>Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-018-2012-z</identifier><identifier>PMID: 29594688</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Aneurysm ; Aneurysm, Dissecting - pathology ; Aneurysm, Dissecting - physiopathology ; Aneurysm, Dissecting - surgery ; Aorta ; Aorta - physiopathology ; Aorta - surgery ; Aortic dissection ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Boundary conditions ; Classical Mechanics ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Correlation analysis ; Degeneration ; Dissection ; Etiology ; Evolutionary algorithms ; Female ; Fluid dynamics ; Hemodynamics ; Humans ; Hydrodynamics ; Large eddy simulation ; Longitudinal Studies ; Middle Aged ; Models, Cardiovascular ; Patients ; Shear stress ; Surgery ; Tears ; Test procedures ; Vortices ; Wall shear stresses</subject><ispartof>Annals of biomedical engineering, 2018-07, Vol.46 (7), p.927-939</ispartof><rights>Biomedical Engineering Society 2018</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5f5a901185092a2b350a41e890f0cac7e039ff8a263b7947543aa71ca9746b133</citedby><cites>FETCH-LOGICAL-c438t-5f5a901185092a2b350a41e890f0cac7e039ff8a263b7947543aa71ca9746b133</cites><orcidid>0000-0001-9907-2044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-018-2012-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-018-2012-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29594688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Huijuan</creatorcontrib><creatorcontrib>Piccinelli, Marina</creatorcontrib><creatorcontrib>Leshnower, Bradley G.</creatorcontrib><creatorcontrib>Lefieux, Adrien</creatorcontrib><creatorcontrib>Taylor, W. Robert</creatorcontrib><creatorcontrib>Veneziani, Alessandro</creatorcontrib><title>Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications.</description><subject>Algorithms</subject><subject>Aneurysm</subject><subject>Aneurysm, Dissecting - pathology</subject><subject>Aneurysm, Dissecting - physiopathology</subject><subject>Aneurysm, Dissecting - surgery</subject><subject>Aorta</subject><subject>Aorta - physiopathology</subject><subject>Aorta - surgery</subject><subject>Aortic dissection</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Degeneration</subject><subject>Dissection</subject><subject>Etiology</subject><subject>Evolutionary algorithms</subject><subject>Female</subject><subject>Fluid dynamics</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Large eddy simulation</subject><subject>Longitudinal Studies</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Patients</subject><subject>Shear stress</subject><subject>Surgery</subject><subject>Tears</subject><subject>Test procedures</subject><subject>Vortices</subject><subject>Wall shear stresses</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kbtu3DAQRQkjgb1-fICbgEAaN3KGL4lMt16_AmzgwnYtcLnUhoYkKqRUyJX_IX_oLwkF2QkQIM1wAJ57ZzAXoVMC5wSg-BIJcKYyIDKjQGj2vIcWRBQsU7nMP6AFgIIsVzk_QIcxPgEQIpnYRwdUCcVzKReoXvmhq-0Wf_eh--Frv3NG168vv25t47djqxtn8Mo33dDr3vlW13iZyhhdxL7CD2Nn8QVe-tAn7tLFaM2EfcVLvPbtzvXD1k2i-9SMx-hjpetoT97eI_R4ffWwus3WdzffVst1ZjiTfSYqodW0qwBFNd0wAZoTKxVUYLQpLDBVVVLTnG0KxQvBmdYFMVoVPN8Qxo7Q2ezbBf9zsLEvGxeNrWvdWj_EMh1LSUJyAQn9_A_65IeQNp4poigvaKLITJngYwy2KrvgGh3GkkA5RVHOUZQpiklHy-ek-fTmPGwau_2jeL99AugMxPTV7mz4O_r_rr8Bn9eU9w</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Xu, Huijuan</creator><creator>Piccinelli, Marina</creator><creator>Leshnower, Bradley G.</creator><creator>Lefieux, Adrien</creator><creator>Taylor, W. Robert</creator><creator>Veneziani, Alessandro</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9907-2044</orcidid></search><sort><creationdate>20180701</creationdate><title>Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study</title><author>Xu, Huijuan ; Piccinelli, Marina ; Leshnower, Bradley G. ; Lefieux, Adrien ; Taylor, W. Robert ; Veneziani, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5f5a901185092a2b350a41e890f0cac7e039ff8a263b7947543aa71ca9746b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Aneurysm</topic><topic>Aneurysm, Dissecting - pathology</topic><topic>Aneurysm, Dissecting - physiopathology</topic><topic>Aneurysm, Dissecting - surgery</topic><topic>Aorta</topic><topic>Aorta - physiopathology</topic><topic>Aorta - surgery</topic><topic>Aortic dissection</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Degeneration</topic><topic>Dissection</topic><topic>Etiology</topic><topic>Evolutionary algorithms</topic><topic>Female</topic><topic>Fluid dynamics</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Large eddy simulation</topic><topic>Longitudinal Studies</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Patients</topic><topic>Shear stress</topic><topic>Surgery</topic><topic>Tears</topic><topic>Test procedures</topic><topic>Vortices</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Huijuan</creatorcontrib><creatorcontrib>Piccinelli, Marina</creatorcontrib><creatorcontrib>Leshnower, Bradley G.</creatorcontrib><creatorcontrib>Lefieux, Adrien</creatorcontrib><creatorcontrib>Taylor, W. Robert</creatorcontrib><creatorcontrib>Veneziani, Alessandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Huijuan</au><au>Piccinelli, Marina</au><au>Leshnower, Bradley G.</au><au>Lefieux, Adrien</au><au>Taylor, W. Robert</au><au>Veneziani, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>46</volume><issue>7</issue><spage>927</spage><epage>939</epage><pages>927-939</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Progressive false lumen aneurysmal degeneration in type B aortic dissection (TBAD) is a complex process with a multi-factorial etiology. Patient-specific computational fluid dynamics (CFD) simulations provide spatial and temporal hemodynamic quantities that facilitate understanding this disease progression. A longitudinal study was performed for a TBAD patient, who was diagnosed with the uncomplicated TBAD in 2006 and treated with optimal medical therapy but received surgery in 2010 due to late complication. Geometries of the aorta in 2006 and 2010 were reconstructed. With registration algorithms, we accurately quantified the evolution of the false lumen, while with CFD simulations we computed several hemodynamic indexes, including the wall shear stress (WSS), and the relative residence time (RRT). The numerical fluid model included large eddy simulation (LES) modeling for efficiently capturing the flow disturbances induced by the entry tears. In the absence of complete patient-specific data, the boundary conditions were based on a specific calibration method. Correlations between hemodynamics and the evolution field in time obtained by registration of the false lumen are discussed. Further testing of this methodology on a large cohort of patients may enable the use of CFD to predict whether patients, with originally uncomplicated TBAD, develop late complications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29594688</pmid><doi>10.1007/s10439-018-2012-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9907-2044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2018-07, Vol.46 (7), p.927-939 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_2019811650 |
source | MEDLINE; SpringerLink Journals |
subjects | Algorithms Aneurysm Aneurysm, Dissecting - pathology Aneurysm, Dissecting - physiopathology Aneurysm, Dissecting - surgery Aorta Aorta - physiopathology Aorta - surgery Aortic dissection Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Boundary conditions Classical Mechanics Computational fluid dynamics Computer applications Computer Simulation Correlation analysis Degeneration Dissection Etiology Evolutionary algorithms Female Fluid dynamics Hemodynamics Humans Hydrodynamics Large eddy simulation Longitudinal Studies Middle Aged Models, Cardiovascular Patients Shear stress Surgery Tears Test procedures Vortices Wall shear stresses |
title | Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Morphological%E2%80%93Hemodynamic%20Computational%20Analysis%20of%20Type%20B%20Aortic%20Dissection:%20A%20Longitudinal%20Study&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Xu,%20Huijuan&rft.date=2018-07-01&rft.volume=46&rft.issue=7&rft.spage=927&rft.epage=939&rft.pages=927-939&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-018-2012-z&rft_dat=%3Cproquest_cross%3E2019811650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019192472&rft_id=info:pmid/29594688&rfr_iscdi=true |