The Future of Data-Driven Wound Care
ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-spec...
Gespeichert in:
Veröffentlicht in: | AORN journal 2018-04, Vol.107 (4), p.455-463 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | 4 |
container_start_page | 455 |
container_title | AORN journal |
container_volume | 107 |
creator | Woods, Jon S., MD Saxena, Mayur, MS Nagamine, Tasha, MS Howell, Raelina S., MD Criscitelli, Theresa, EdD, RN, CNOR Gorenstein, Scott, MD, FACEP Gillette, Brian M., PhD |
description | ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care. |
doi_str_mv | 10.1002/aorn.12102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2019807459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1878036918301181</els_id><sourcerecordid>2063815488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</originalsourceid><addsrcrecordid>eNp9kVFLwzAQx4Mobk5f_ABS0AcROnNJuqYvwticCsOBTnwMaXvFzq6dyTrZtzd1m4gP5iDJw-_-HL8j5BRoFyhl17oyZRcYULZH2iBD6VPei_Z__VvkyNoZdYez4JC0WBS4oqxNLqZv6I3qZW3QqzJvqJfaH5p8haX3WtVl6g20wWNykOnC4sn27ZCX0e10cO-PJ3cPg_7YTwQw5sdBqBOpNWAgEOJMxBHj7k5ClsaRlD2NnAueJWkqaBZKHTMItJQ0lXEKseAdcrnJXZjqo0a7VPPcJlgUusSqtopRiCQNRRA59PwPOqtqU7rpHNXjEgIhpaOuNlRiKmsNZmph8rk2awVUNe5U4059u3Pw2TayjueY_qA7WQ6ADfCZF7j-J0r1J0-Pu9CbTQ86b6scjUqKvMwTXbzjGu3P0KAsU1Q9NytrNgaSUwAJ_AsjvIs3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063815488</pqid></control><display><type>article</type><title>The Future of Data-Driven Wound Care</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</creator><creatorcontrib>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</creatorcontrib><description>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</description><identifier>ISSN: 1878-0369</identifier><identifier>ISSN: 0001-2092</identifier><identifier>EISSN: 1878-0369</identifier><identifier>DOI: 10.1002/aorn.12102</identifier><identifier>PMID: 29595902</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Blood pressure ; Clinical decision making ; Clinical trials ; Data analysis ; dataset ; Datasets ; Decision making ; Electronic health records ; Health care ; Hospitals ; machine learning ; Medical equipment ; Medical records ; Medical/Surgical ; neural networks ; Nursing ; Patients ; Physicians ; Quality of care ; Regulatory approval ; Velocity ; wound care ; Wound healing</subject><ispartof>AORN journal, 2018-04, Vol.107 (4), p.455-463</ispartof><rights>AORN, Inc.</rights><rights>AORN, Inc, 2018</rights><rights>AORN, Inc, 2018.</rights><rights>Copyright John Wiley & Sons, Inc. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</citedby><cites>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faorn.12102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faorn.12102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29595902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Jon S., MD</creatorcontrib><creatorcontrib>Saxena, Mayur, MS</creatorcontrib><creatorcontrib>Nagamine, Tasha, MS</creatorcontrib><creatorcontrib>Howell, Raelina S., MD</creatorcontrib><creatorcontrib>Criscitelli, Theresa, EdD, RN, CNOR</creatorcontrib><creatorcontrib>Gorenstein, Scott, MD, FACEP</creatorcontrib><creatorcontrib>Gillette, Brian M., PhD</creatorcontrib><title>The Future of Data-Driven Wound Care</title><title>AORN journal</title><addtitle>AORN J</addtitle><description>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Blood pressure</subject><subject>Clinical decision making</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>dataset</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Electronic health records</subject><subject>Health care</subject><subject>Hospitals</subject><subject>machine learning</subject><subject>Medical equipment</subject><subject>Medical records</subject><subject>Medical/Surgical</subject><subject>neural networks</subject><subject>Nursing</subject><subject>Patients</subject><subject>Physicians</subject><subject>Quality of care</subject><subject>Regulatory approval</subject><subject>Velocity</subject><subject>wound care</subject><subject>Wound healing</subject><issn>1878-0369</issn><issn>0001-2092</issn><issn>1878-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVFLwzAQx4Mobk5f_ABS0AcROnNJuqYvwticCsOBTnwMaXvFzq6dyTrZtzd1m4gP5iDJw-_-HL8j5BRoFyhl17oyZRcYULZH2iBD6VPei_Z__VvkyNoZdYez4JC0WBS4oqxNLqZv6I3qZW3QqzJvqJfaH5p8haX3WtVl6g20wWNykOnC4sn27ZCX0e10cO-PJ3cPg_7YTwQw5sdBqBOpNWAgEOJMxBHj7k5ClsaRlD2NnAueJWkqaBZKHTMItJQ0lXEKseAdcrnJXZjqo0a7VPPcJlgUusSqtopRiCQNRRA59PwPOqtqU7rpHNXjEgIhpaOuNlRiKmsNZmph8rk2awVUNe5U4059u3Pw2TayjueY_qA7WQ6ADfCZF7j-J0r1J0-Pu9CbTQ86b6scjUqKvMwTXbzjGu3P0KAsU1Q9NytrNgaSUwAJ_AsjvIs3</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Woods, Jon S., MD</creator><creator>Saxena, Mayur, MS</creator><creator>Nagamine, Tasha, MS</creator><creator>Howell, Raelina S., MD</creator><creator>Criscitelli, Theresa, EdD, RN, CNOR</creator><creator>Gorenstein, Scott, MD, FACEP</creator><creator>Gillette, Brian M., PhD</creator><general>John Wiley & Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>The Future of Data-Driven Wound Care</title><author>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Blood pressure</topic><topic>Clinical decision making</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>dataset</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Electronic health records</topic><topic>Health care</topic><topic>Hospitals</topic><topic>machine learning</topic><topic>Medical equipment</topic><topic>Medical records</topic><topic>Medical/Surgical</topic><topic>neural networks</topic><topic>Nursing</topic><topic>Patients</topic><topic>Physicians</topic><topic>Quality of care</topic><topic>Regulatory approval</topic><topic>Velocity</topic><topic>wound care</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Jon S., MD</creatorcontrib><creatorcontrib>Saxena, Mayur, MS</creatorcontrib><creatorcontrib>Nagamine, Tasha, MS</creatorcontrib><creatorcontrib>Howell, Raelina S., MD</creatorcontrib><creatorcontrib>Criscitelli, Theresa, EdD, RN, CNOR</creatorcontrib><creatorcontrib>Gorenstein, Scott, MD, FACEP</creatorcontrib><creatorcontrib>Gillette, Brian M., PhD</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>AORN journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Jon S., MD</au><au>Saxena, Mayur, MS</au><au>Nagamine, Tasha, MS</au><au>Howell, Raelina S., MD</au><au>Criscitelli, Theresa, EdD, RN, CNOR</au><au>Gorenstein, Scott, MD, FACEP</au><au>Gillette, Brian M., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Future of Data-Driven Wound Care</atitle><jtitle>AORN journal</jtitle><addtitle>AORN J</addtitle><date>2018-04</date><risdate>2018</risdate><volume>107</volume><issue>4</issue><spage>455</spage><epage>463</epage><pages>455-463</pages><issn>1878-0369</issn><issn>0001-2092</issn><eissn>1878-0369</eissn><abstract>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29595902</pmid><doi>10.1002/aorn.12102</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-0369 |
ispartof | AORN journal, 2018-04, Vol.107 (4), p.455-463 |
issn | 1878-0369 0001-2092 1878-0369 |
language | eng |
recordid | cdi_proquest_miscellaneous_2019807459 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Artificial intelligence Big Data Blood pressure Clinical decision making Clinical trials Data analysis dataset Datasets Decision making Electronic health records Health care Hospitals machine learning Medical equipment Medical records Medical/Surgical neural networks Nursing Patients Physicians Quality of care Regulatory approval Velocity wound care Wound healing |
title | The Future of Data-Driven Wound Care |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Future%20of%20Data-Driven%20Wound%20Care&rft.jtitle=AORN%20journal&rft.au=Woods,%20Jon%20S.,%20MD&rft.date=2018-04&rft.volume=107&rft.issue=4&rft.spage=455&rft.epage=463&rft.pages=455-463&rft.issn=1878-0369&rft.eissn=1878-0369&rft_id=info:doi/10.1002/aorn.12102&rft_dat=%3Cproquest_cross%3E2063815488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063815488&rft_id=info:pmid/29595902&rft_els_id=1_s2_0_S1878036918301181&rfr_iscdi=true |