The Future of Data-Driven Wound Care

ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AORN journal 2018-04, Vol.107 (4), p.455-463
Hauptverfasser: Woods, Jon S., MD, Saxena, Mayur, MS, Nagamine, Tasha, MS, Howell, Raelina S., MD, Criscitelli, Theresa, EdD, RN, CNOR, Gorenstein, Scott, MD, FACEP, Gillette, Brian M., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 4
container_start_page 455
container_title AORN journal
container_volume 107
creator Woods, Jon S., MD
Saxena, Mayur, MS
Nagamine, Tasha, MS
Howell, Raelina S., MD
Criscitelli, Theresa, EdD, RN, CNOR
Gorenstein, Scott, MD, FACEP
Gillette, Brian M., PhD
description ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.
doi_str_mv 10.1002/aorn.12102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2019807459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1878036918301181</els_id><sourcerecordid>2063815488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</originalsourceid><addsrcrecordid>eNp9kVFLwzAQx4Mobk5f_ABS0AcROnNJuqYvwticCsOBTnwMaXvFzq6dyTrZtzd1m4gP5iDJw-_-HL8j5BRoFyhl17oyZRcYULZH2iBD6VPei_Z__VvkyNoZdYez4JC0WBS4oqxNLqZv6I3qZW3QqzJvqJfaH5p8haX3WtVl6g20wWNykOnC4sn27ZCX0e10cO-PJ3cPg_7YTwQw5sdBqBOpNWAgEOJMxBHj7k5ClsaRlD2NnAueJWkqaBZKHTMItJQ0lXEKseAdcrnJXZjqo0a7VPPcJlgUusSqtopRiCQNRRA59PwPOqtqU7rpHNXjEgIhpaOuNlRiKmsNZmph8rk2awVUNe5U4059u3Pw2TayjueY_qA7WQ6ADfCZF7j-J0r1J0-Pu9CbTQ86b6scjUqKvMwTXbzjGu3P0KAsU1Q9NytrNgaSUwAJ_AsjvIs3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063815488</pqid></control><display><type>article</type><title>The Future of Data-Driven Wound Care</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</creator><creatorcontrib>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</creatorcontrib><description>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</description><identifier>ISSN: 1878-0369</identifier><identifier>ISSN: 0001-2092</identifier><identifier>EISSN: 1878-0369</identifier><identifier>DOI: 10.1002/aorn.12102</identifier><identifier>PMID: 29595902</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Blood pressure ; Clinical decision making ; Clinical trials ; Data analysis ; dataset ; Datasets ; Decision making ; Electronic health records ; Health care ; Hospitals ; machine learning ; Medical equipment ; Medical records ; Medical/Surgical ; neural networks ; Nursing ; Patients ; Physicians ; Quality of care ; Regulatory approval ; Velocity ; wound care ; Wound healing</subject><ispartof>AORN journal, 2018-04, Vol.107 (4), p.455-463</ispartof><rights>AORN, Inc.</rights><rights>AORN, Inc, 2018</rights><rights>AORN, Inc, 2018.</rights><rights>Copyright John Wiley &amp; Sons, Inc. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</citedby><cites>FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faorn.12102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faorn.12102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29595902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Jon S., MD</creatorcontrib><creatorcontrib>Saxena, Mayur, MS</creatorcontrib><creatorcontrib>Nagamine, Tasha, MS</creatorcontrib><creatorcontrib>Howell, Raelina S., MD</creatorcontrib><creatorcontrib>Criscitelli, Theresa, EdD, RN, CNOR</creatorcontrib><creatorcontrib>Gorenstein, Scott, MD, FACEP</creatorcontrib><creatorcontrib>Gillette, Brian M., PhD</creatorcontrib><title>The Future of Data-Driven Wound Care</title><title>AORN journal</title><addtitle>AORN J</addtitle><description>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Blood pressure</subject><subject>Clinical decision making</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>dataset</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Electronic health records</subject><subject>Health care</subject><subject>Hospitals</subject><subject>machine learning</subject><subject>Medical equipment</subject><subject>Medical records</subject><subject>Medical/Surgical</subject><subject>neural networks</subject><subject>Nursing</subject><subject>Patients</subject><subject>Physicians</subject><subject>Quality of care</subject><subject>Regulatory approval</subject><subject>Velocity</subject><subject>wound care</subject><subject>Wound healing</subject><issn>1878-0369</issn><issn>0001-2092</issn><issn>1878-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVFLwzAQx4Mobk5f_ABS0AcROnNJuqYvwticCsOBTnwMaXvFzq6dyTrZtzd1m4gP5iDJw-_-HL8j5BRoFyhl17oyZRcYULZH2iBD6VPei_Z__VvkyNoZdYez4JC0WBS4oqxNLqZv6I3qZW3QqzJvqJfaH5p8haX3WtVl6g20wWNykOnC4sn27ZCX0e10cO-PJ3cPg_7YTwQw5sdBqBOpNWAgEOJMxBHj7k5ClsaRlD2NnAueJWkqaBZKHTMItJQ0lXEKseAdcrnJXZjqo0a7VPPcJlgUusSqtopRiCQNRRA59PwPOqtqU7rpHNXjEgIhpaOuNlRiKmsNZmph8rk2awVUNe5U4059u3Pw2TayjueY_qA7WQ6ADfCZF7j-J0r1J0-Pu9CbTQ86b6scjUqKvMwTXbzjGu3P0KAsU1Q9NytrNgaSUwAJ_AsjvIs3</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Woods, Jon S., MD</creator><creator>Saxena, Mayur, MS</creator><creator>Nagamine, Tasha, MS</creator><creator>Howell, Raelina S., MD</creator><creator>Criscitelli, Theresa, EdD, RN, CNOR</creator><creator>Gorenstein, Scott, MD, FACEP</creator><creator>Gillette, Brian M., PhD</creator><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>The Future of Data-Driven Wound Care</title><author>Woods, Jon S., MD ; Saxena, Mayur, MS ; Nagamine, Tasha, MS ; Howell, Raelina S., MD ; Criscitelli, Theresa, EdD, RN, CNOR ; Gorenstein, Scott, MD, FACEP ; Gillette, Brian M., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4122-b57ac8aa1e54e1bf4b923f4bc72db9886ae3343fcdd40f78ab215a880d8bd1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Blood pressure</topic><topic>Clinical decision making</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>dataset</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Electronic health records</topic><topic>Health care</topic><topic>Hospitals</topic><topic>machine learning</topic><topic>Medical equipment</topic><topic>Medical records</topic><topic>Medical/Surgical</topic><topic>neural networks</topic><topic>Nursing</topic><topic>Patients</topic><topic>Physicians</topic><topic>Quality of care</topic><topic>Regulatory approval</topic><topic>Velocity</topic><topic>wound care</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Jon S., MD</creatorcontrib><creatorcontrib>Saxena, Mayur, MS</creatorcontrib><creatorcontrib>Nagamine, Tasha, MS</creatorcontrib><creatorcontrib>Howell, Raelina S., MD</creatorcontrib><creatorcontrib>Criscitelli, Theresa, EdD, RN, CNOR</creatorcontrib><creatorcontrib>Gorenstein, Scott, MD, FACEP</creatorcontrib><creatorcontrib>Gillette, Brian M., PhD</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>AORN journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Jon S., MD</au><au>Saxena, Mayur, MS</au><au>Nagamine, Tasha, MS</au><au>Howell, Raelina S., MD</au><au>Criscitelli, Theresa, EdD, RN, CNOR</au><au>Gorenstein, Scott, MD, FACEP</au><au>Gillette, Brian M., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Future of Data-Driven Wound Care</atitle><jtitle>AORN journal</jtitle><addtitle>AORN J</addtitle><date>2018-04</date><risdate>2018</risdate><volume>107</volume><issue>4</issue><spage>455</spage><epage>463</epage><pages>455-463</pages><issn>1878-0369</issn><issn>0001-2092</issn><eissn>1878-0369</eissn><abstract>ABSTRACT Care for patients with chronic wounds can be complex, and the chances of poor outcomes are high if wound care is not optimized through evidence-based protocols. Tracking and managing every variable and comorbidity in patients with wounds is difficult despite the increasing use of wound-specific electronic medical records. Harnessing the power of big data analytics to help nurses and physicians provide optimized care based on the care provided to millions of patients can result in better outcomes. Numerous applications of machine learning toward workflow improvements, inpatient monitoring, outpatient communication, and hospital operations can improve overall efficiency and efficacy of care delivery in and out of the hospital, while reducing adverse events and complications. This article provides an overview of the application of big data analytics and machine learning in health care, highlights important recent advances, and discusses how these technologies may revolutionize advanced wound care.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29595902</pmid><doi>10.1002/aorn.12102</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1878-0369
ispartof AORN journal, 2018-04, Vol.107 (4), p.455-463
issn 1878-0369
0001-2092
1878-0369
language eng
recordid cdi_proquest_miscellaneous_2019807459
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Artificial intelligence
Big Data
Blood pressure
Clinical decision making
Clinical trials
Data analysis
dataset
Datasets
Decision making
Electronic health records
Health care
Hospitals
machine learning
Medical equipment
Medical records
Medical/Surgical
neural networks
Nursing
Patients
Physicians
Quality of care
Regulatory approval
Velocity
wound care
Wound healing
title The Future of Data-Driven Wound Care
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Future%20of%20Data-Driven%20Wound%20Care&rft.jtitle=AORN%20journal&rft.au=Woods,%20Jon%20S.,%20MD&rft.date=2018-04&rft.volume=107&rft.issue=4&rft.spage=455&rft.epage=463&rft.pages=455-463&rft.issn=1878-0369&rft.eissn=1878-0369&rft_id=info:doi/10.1002/aorn.12102&rft_dat=%3Cproquest_cross%3E2063815488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063815488&rft_id=info:pmid/29595902&rft_els_id=1_s2_0_S1878036918301181&rfr_iscdi=true