A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation

Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback ("integral feedback") ensures perfect adaptation, where steady-state output i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2009-07, Vol.138 (1), p.160-171
Hauptverfasser: Muzzey, Dale, Gomez-Uribe, Carlos A, Mettetal, Jerome T, Van Oudenaarden, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 1
container_start_page 160
container_title Cell
container_volume 138
creator Muzzey, Dale
Gomez-Uribe, Carlos A
Mettetal, Jerome T
Van Oudenaarden, Alexander
description Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback ("integral feedback") ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage.
doi_str_mv 10.1016/j.cell.2009.04.047Article
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_20190451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20190451</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_201904513</originalsourceid><addsrcrecordid>eNqNjssKwjAURIMoWB__EDfuWm9qH3ZZxOJCUNCNKwn1ViJpU3tTwb-3ih8gDAycOYthbCbAEyCixd3LUWvPB0g8CLrEaWNVrrHHHAFJ7AYi9vvM6XbfXUVxMGQjojsArMIwdFiW8uOLLJbk7vCJmqeV1C9SxE3BD9gUmFueXmVtpVWm4qriZ5Rk-Z5K0-Ct1V8-YYNCasLpr8dsnm1O661bN-bRItlLqejzVFZoWrr4IBIIQrH8W3wDB4pIhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20190451</pqid></control><display><type>article</type><title>A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muzzey, Dale ; Gomez-Uribe, Carlos A ; Mettetal, Jerome T ; Van Oudenaarden, Alexander</creator><creatorcontrib>Muzzey, Dale ; Gomez-Uribe, Carlos A ; Mettetal, Jerome T ; Van Oudenaarden, Alexander</creatorcontrib><description>Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback ("integral feedback") ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2009.04.047Article</identifier><language>eng</language><subject>Saccharomyces cerevisiae</subject><ispartof>Cell, 2009-07, Vol.138 (1), p.160-171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Muzzey, Dale</creatorcontrib><creatorcontrib>Gomez-Uribe, Carlos A</creatorcontrib><creatorcontrib>Mettetal, Jerome T</creatorcontrib><creatorcontrib>Van Oudenaarden, Alexander</creatorcontrib><title>A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation</title><title>Cell</title><description>Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback ("integral feedback") ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage.</description><subject>Saccharomyces cerevisiae</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNjssKwjAURIMoWB__EDfuWm9qH3ZZxOJCUNCNKwn1ViJpU3tTwb-3ih8gDAycOYthbCbAEyCixd3LUWvPB0g8CLrEaWNVrrHHHAFJ7AYi9vvM6XbfXUVxMGQjojsArMIwdFiW8uOLLJbk7vCJmqeV1C9SxE3BD9gUmFueXmVtpVWm4qriZ5Rk-Z5K0-Ct1V8-YYNCasLpr8dsnm1O661bN-bRItlLqejzVFZoWrr4IBIIQrH8W3wDB4pIhA</recordid><startdate>20090710</startdate><enddate>20090710</enddate><creator>Muzzey, Dale</creator><creator>Gomez-Uribe, Carlos A</creator><creator>Mettetal, Jerome T</creator><creator>Van Oudenaarden, Alexander</creator><scope>M7N</scope></search><sort><creationdate>20090710</creationdate><title>A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation</title><author>Muzzey, Dale ; Gomez-Uribe, Carlos A ; Mettetal, Jerome T ; Van Oudenaarden, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_201904513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Saccharomyces cerevisiae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzzey, Dale</creatorcontrib><creatorcontrib>Gomez-Uribe, Carlos A</creatorcontrib><creatorcontrib>Mettetal, Jerome T</creatorcontrib><creatorcontrib>Van Oudenaarden, Alexander</creatorcontrib><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzzey, Dale</au><au>Gomez-Uribe, Carlos A</au><au>Mettetal, Jerome T</au><au>Van Oudenaarden, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation</atitle><jtitle>Cell</jtitle><date>2009-07-10</date><risdate>2009</risdate><volume>138</volume><issue>1</issue><spage>160</spage><epage>171</epage><pages>160-171</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Negative feedback can serve many different cellular functions, including noise reduction in transcriptional networks and the creation of circadian oscillations. However, only one special type of negative feedback ("integral feedback") ensures perfect adaptation, where steady-state output is independent of steady-state input. Here we quantitatively measure single-cell dynamics in the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase Hog1 perfectly adapts to changes in external osmolarity, a feature robust to signaling fidelity and operating with very low noise. By monitoring multiple system quantities (e.g., cell volume, Hog1, glycerol) and using varied input waveforms (e.g., steps and ramps), we assess in a minimally invasive manner the network location of the mechanism responsible for perfect adaptation. We conclude that the system contains only one effective integrating mechanism, which requires Hog1 kinase activity and regulates glycerol synthesis but not leakage.</abstract><doi>10.1016/j.cell.2009.04.047Article</doi></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2009-07, Vol.138 (1), p.160-171
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_20190451
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Saccharomyces cerevisiae
title A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems-Level%20Analysis%20of%20Perfect%20Adaptation%20in%20Yeast%20Osmoregulation&rft.jtitle=Cell&rft.au=Muzzey,%20Dale&rft.date=2009-07-10&rft.volume=138&rft.issue=1&rft.spage=160&rft.epage=171&rft.pages=160-171&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2009.04.047Article&rft_dat=%3Cproquest%3E20190451%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20190451&rft_id=info:pmid/&rfr_iscdi=true