Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments
The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition...
Gespeichert in:
Veröffentlicht in: | Current genetics 2006-09, Vol.50 (3), p.183-191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 3 |
container_start_page | 183 |
container_title | Current genetics |
container_volume | 50 |
creator | Dmytruk, Kostyantyn V Voronovsky, Andriy Y Sibirny, Andriy A |
description | The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata. |
doi_str_mv | 10.1007/s00294-006-0083-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20190270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193467881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</originalsourceid><addsrcrecordid>eNpdkU2PFCEQQInRuOPoD_CixIPRQ2sBPU33cTPrxyYbPbieSTVUz7KZhhXomPn3Ms4kJh4IBx6PCo-xlwI-CAD9MQPIoW0Aurp61cAjthKtkg0MvXrMViC0bPp6csGe5XwPIGQ_6KfsQnRaQyc3K_b7OmRKxcfA56XgjgJln3mceLkjfiDMhW8xOO-QTzhjQf7uikZMhzgfLGV-h1UQvH_PxwNPlYwz96HQLuFfazXtfSBM_OrbJZ8S7mYKJT9nTybcZ3px3tfs9vOn2-3X5ub7l-vt5U1jVS9Ks3EalCBnlbTagbV22MihtwpbLVuhrQM3gXTDCN0oWzsokqLCumu7yY1qzd6etA8p_looFzP7bGm_x0BxyUaCGEDWN9bszX_gfVxSqKOZHvRGadHKCokTZFPMOdFkHpKf618YAeZYxJyKmFrEHIuYo_jVWbyMM7l_N84JKvD6BEwYDe6Sz-bnjzqXAiEkyF6qP9joj_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807537142</pqid></control><display><type>article</type><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</creator><creatorcontrib>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</creatorcontrib><description>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-006-0083-0</identifier><identifier>PMID: 16770625</identifier><language>eng</language><publisher>United States: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Base Sequence ; Candida - genetics ; Candida - metabolism ; Candida famata ; Debaryomyces hansenii ; Deoxyribonucleic acid ; DNA ; DNA, Fungal - genetics ; Genes, Fungal ; Iron - metabolism ; Microbiology ; Mutagenesis ; Mutagenesis, Insertional - methods ; Mutation ; Phenotype ; Plasmids - genetics ; Riboflavin - biosynthesis ; Saccharomyces cerevisiae ; Saccharomycetales - genetics ; Saccharomycetales - metabolism ; Staphylococcus aureus ; Transformation, Genetic ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2006-09, Vol.50 (3), p.183-191</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</citedby><cites>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16770625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmytruk, Kostyantyn V</creatorcontrib><creatorcontrib>Voronovsky, Andriy Y</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</description><subject>Base Sequence</subject><subject>Candida - genetics</subject><subject>Candida - metabolism</subject><subject>Candida famata</subject><subject>Debaryomyces hansenii</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Fungal - genetics</subject><subject>Genes, Fungal</subject><subject>Iron - metabolism</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Plasmids - genetics</subject><subject>Riboflavin - biosynthesis</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - metabolism</subject><subject>Staphylococcus aureus</subject><subject>Transformation, Genetic</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU2PFCEQQInRuOPoD_CixIPRQ2sBPU33cTPrxyYbPbieSTVUz7KZhhXomPn3Ms4kJh4IBx6PCo-xlwI-CAD9MQPIoW0Aurp61cAjthKtkg0MvXrMViC0bPp6csGe5XwPIGQ_6KfsQnRaQyc3K_b7OmRKxcfA56XgjgJln3mceLkjfiDMhW8xOO-QTzhjQf7uikZMhzgfLGV-h1UQvH_PxwNPlYwz96HQLuFfazXtfSBM_OrbJZ8S7mYKJT9nTybcZ3px3tfs9vOn2-3X5ub7l-vt5U1jVS9Ks3EalCBnlbTagbV22MihtwpbLVuhrQM3gXTDCN0oWzsokqLCumu7yY1qzd6etA8p_looFzP7bGm_x0BxyUaCGEDWN9bszX_gfVxSqKOZHvRGadHKCokTZFPMOdFkHpKf618YAeZYxJyKmFrEHIuYo_jVWbyMM7l_N84JKvD6BEwYDe6Sz-bnjzqXAiEkyF6qP9joj_8</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Dmytruk, Kostyantyn V</creator><creator>Voronovsky, Andriy Y</creator><creator>Sibirny, Andriy A</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20060901</creationdate><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><author>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Candida - genetics</topic><topic>Candida - metabolism</topic><topic>Candida famata</topic><topic>Debaryomyces hansenii</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Fungal - genetics</topic><topic>Genes, Fungal</topic><topic>Iron - metabolism</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Plasmids - genetics</topic><topic>Riboflavin - biosynthesis</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - metabolism</topic><topic>Staphylococcus aureus</topic><topic>Transformation, Genetic</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmytruk, Kostyantyn V</creatorcontrib><creatorcontrib>Voronovsky, Andriy Y</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmytruk, Kostyantyn V</au><au>Voronovsky, Andriy Y</au><au>Sibirny, Andriy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</atitle><jtitle>Current genetics</jtitle><addtitle>Curr Genet</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>50</volume><issue>3</issue><spage>183</spage><epage>191</epage><pages>183-191</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</abstract><cop>United States</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>16770625</pmid><doi>10.1007/s00294-006-0083-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2006-09, Vol.50 (3), p.183-191 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_proquest_miscellaneous_20190270 |
source | MEDLINE; SpringerLink Journals |
subjects | Base Sequence Candida - genetics Candida - metabolism Candida famata Debaryomyces hansenii Deoxyribonucleic acid DNA DNA, Fungal - genetics Genes, Fungal Iron - metabolism Microbiology Mutagenesis Mutagenesis, Insertional - methods Mutation Phenotype Plasmids - genetics Riboflavin - biosynthesis Saccharomyces cerevisiae Saccharomycetales - genetics Saccharomycetales - metabolism Staphylococcus aureus Transformation, Genetic Yeast Yeasts |
title | Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion%20mutagenesis%20of%20the%20yeast%20Candida%20famata%20(Debaryomyces%20hansenii)%20by%20random%20integration%20of%20linear%20DNA%20fragments&rft.jtitle=Current%20genetics&rft.au=Dmytruk,%20Kostyantyn%20V&rft.date=2006-09-01&rft.volume=50&rft.issue=3&rft.spage=183&rft.epage=191&rft.pages=183-191&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-006-0083-0&rft_dat=%3Cproquest_cross%3E2193467881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807537142&rft_id=info:pmid/16770625&rfr_iscdi=true |