Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments

The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 2006-09, Vol.50 (3), p.183-191
Hauptverfasser: Dmytruk, Kostyantyn V, Voronovsky, Andriy Y, Sibirny, Andriy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 3
container_start_page 183
container_title Current genetics
container_volume 50
creator Dmytruk, Kostyantyn V
Voronovsky, Andriy Y
Sibirny, Andriy A
description The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.
doi_str_mv 10.1007/s00294-006-0083-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20190270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193467881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</originalsourceid><addsrcrecordid>eNpdkU2PFCEQQInRuOPoD_CixIPRQ2sBPU33cTPrxyYbPbieSTVUz7KZhhXomPn3Ms4kJh4IBx6PCo-xlwI-CAD9MQPIoW0Aurp61cAjthKtkg0MvXrMViC0bPp6csGe5XwPIGQ_6KfsQnRaQyc3K_b7OmRKxcfA56XgjgJln3mceLkjfiDMhW8xOO-QTzhjQf7uikZMhzgfLGV-h1UQvH_PxwNPlYwz96HQLuFfazXtfSBM_OrbJZ8S7mYKJT9nTybcZ3px3tfs9vOn2-3X5ub7l-vt5U1jVS9Ks3EalCBnlbTagbV22MihtwpbLVuhrQM3gXTDCN0oWzsokqLCumu7yY1qzd6etA8p_looFzP7bGm_x0BxyUaCGEDWN9bszX_gfVxSqKOZHvRGadHKCokTZFPMOdFkHpKf618YAeZYxJyKmFrEHIuYo_jVWbyMM7l_N84JKvD6BEwYDe6Sz-bnjzqXAiEkyF6qP9joj_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807537142</pqid></control><display><type>article</type><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</creator><creatorcontrib>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</creatorcontrib><description>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-006-0083-0</identifier><identifier>PMID: 16770625</identifier><language>eng</language><publisher>United States: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Base Sequence ; Candida - genetics ; Candida - metabolism ; Candida famata ; Debaryomyces hansenii ; Deoxyribonucleic acid ; DNA ; DNA, Fungal - genetics ; Genes, Fungal ; Iron - metabolism ; Microbiology ; Mutagenesis ; Mutagenesis, Insertional - methods ; Mutation ; Phenotype ; Plasmids - genetics ; Riboflavin - biosynthesis ; Saccharomyces cerevisiae ; Saccharomycetales - genetics ; Saccharomycetales - metabolism ; Staphylococcus aureus ; Transformation, Genetic ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2006-09, Vol.50 (3), p.183-191</ispartof><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</citedby><cites>FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16770625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmytruk, Kostyantyn V</creatorcontrib><creatorcontrib>Voronovsky, Andriy Y</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</description><subject>Base Sequence</subject><subject>Candida - genetics</subject><subject>Candida - metabolism</subject><subject>Candida famata</subject><subject>Debaryomyces hansenii</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Fungal - genetics</subject><subject>Genes, Fungal</subject><subject>Iron - metabolism</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Plasmids - genetics</subject><subject>Riboflavin - biosynthesis</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - metabolism</subject><subject>Staphylococcus aureus</subject><subject>Transformation, Genetic</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU2PFCEQQInRuOPoD_CixIPRQ2sBPU33cTPrxyYbPbieSTVUz7KZhhXomPn3Ms4kJh4IBx6PCo-xlwI-CAD9MQPIoW0Aurp61cAjthKtkg0MvXrMViC0bPp6csGe5XwPIGQ_6KfsQnRaQyc3K_b7OmRKxcfA56XgjgJln3mceLkjfiDMhW8xOO-QTzhjQf7uikZMhzgfLGV-h1UQvH_PxwNPlYwz96HQLuFfazXtfSBM_OrbJZ8S7mYKJT9nTybcZ3px3tfs9vOn2-3X5ub7l-vt5U1jVS9Ks3EalCBnlbTagbV22MihtwpbLVuhrQM3gXTDCN0oWzsokqLCumu7yY1qzd6etA8p_looFzP7bGm_x0BxyUaCGEDWN9bszX_gfVxSqKOZHvRGadHKCokTZFPMOdFkHpKf618YAeZYxJyKmFrEHIuYo_jVWbyMM7l_N84JKvD6BEwYDe6Sz-bnjzqXAiEkyF6qP9joj_8</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Dmytruk, Kostyantyn V</creator><creator>Voronovsky, Andriy Y</creator><creator>Sibirny, Andriy A</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20060901</creationdate><title>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</title><author>Dmytruk, Kostyantyn V ; Voronovsky, Andriy Y ; Sibirny, Andriy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-5d7031edc32c7d0ccc95298c3a472417cd0df02d9b06b24c93e21c327646fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Candida - genetics</topic><topic>Candida - metabolism</topic><topic>Candida famata</topic><topic>Debaryomyces hansenii</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Fungal - genetics</topic><topic>Genes, Fungal</topic><topic>Iron - metabolism</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Plasmids - genetics</topic><topic>Riboflavin - biosynthesis</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - metabolism</topic><topic>Staphylococcus aureus</topic><topic>Transformation, Genetic</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmytruk, Kostyantyn V</creatorcontrib><creatorcontrib>Voronovsky, Andriy Y</creatorcontrib><creatorcontrib>Sibirny, Andriy A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmytruk, Kostyantyn V</au><au>Voronovsky, Andriy Y</au><au>Sibirny, Andriy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments</atitle><jtitle>Current genetics</jtitle><addtitle>Curr Genet</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>50</volume><issue>3</issue><spage>183</spage><epage>191</epage><pages>183-191</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.</abstract><cop>United States</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>16770625</pmid><doi>10.1007/s00294-006-0083-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 2006-09, Vol.50 (3), p.183-191
issn 0172-8083
1432-0983
language eng
recordid cdi_proquest_miscellaneous_20190270
source MEDLINE; SpringerLink Journals
subjects Base Sequence
Candida - genetics
Candida - metabolism
Candida famata
Debaryomyces hansenii
Deoxyribonucleic acid
DNA
DNA, Fungal - genetics
Genes, Fungal
Iron - metabolism
Microbiology
Mutagenesis
Mutagenesis, Insertional - methods
Mutation
Phenotype
Plasmids - genetics
Riboflavin - biosynthesis
Saccharomyces cerevisiae
Saccharomycetales - genetics
Saccharomycetales - metabolism
Staphylococcus aureus
Transformation, Genetic
Yeast
Yeasts
title Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion%20mutagenesis%20of%20the%20yeast%20Candida%20famata%20(Debaryomyces%20hansenii)%20by%20random%20integration%20of%20linear%20DNA%20fragments&rft.jtitle=Current%20genetics&rft.au=Dmytruk,%20Kostyantyn%20V&rft.date=2006-09-01&rft.volume=50&rft.issue=3&rft.spage=183&rft.epage=191&rft.pages=183-191&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-006-0083-0&rft_dat=%3Cproquest_cross%3E2193467881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807537142&rft_id=info:pmid/16770625&rfr_iscdi=true