A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco

Time series of then years of Hourly Average Wind Speed, HAWS, data from Tangiers station are analysed on a statistical basis by applying the Markovian process. The limiting behaviour of the Markov chain is then examined and compared to the histogram of observed wind speed. It was found that a 12x12...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2004-07, Vol.29 (8), p.1407-1418
Hauptverfasser: NFAOUI, H, ESSIARAB, H, SAYIGH, A. A. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1418
container_issue 8
container_start_page 1407
container_title Renewable energy
container_volume 29
creator NFAOUI, H
ESSIARAB, H
SAYIGH, A. A. M
description Time series of then years of Hourly Average Wind Speed, HAWS, data from Tangiers station are analysed on a statistical basis by applying the Markovian process. The limiting behaviour of the Markov chain is then examined and compared to the histogram of observed wind speed. It was found that a 12x12 transition probability matrix was necessary to generate an acceptable synthetic time series. The manner in which the Markovian model can be used to generate wind speed time series are also described. Using the transition probability matrix developed from the real wind data, the synthetic wind speed time series are generated. The comparison between the real wind speed and the synthetic one shows that the statistical characteristics of wind speed are faithfully reproduced. The synthetic HAWS may be utilised as input data for any wind energy system.
doi_str_mv 10.1016/S0960-1481(03)00143-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20188678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20188678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-c55df6d5d3e64690c158628a86534e97727c8cc307657e08f037bd45608f8ad53</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-BCEXRcHqpGk-epTFL3Dx4HrxEmKartG2WTNdxX9v1130NDPwzLzDQ8ghg3MGTF48QikhY4VmJ8BPAVjBM7FFRkyrMgOp820y-kN2yR7i2wAJrYoReb6k2Ef3arEPjk5teo-fdBhDR9tY-YbWMVEM7bKxfejm9Ct0FcWF9xXtQ-sp-hQ8UtvTme3mwSc8o9OYonNxn-zUtkF_sKlj8nR9NZvcZvcPN3eTy_vMcZb3mROiqmUlKu5lIUtww2cy11ZLwQtfKpUrp53joKRQHnQNXL1UhZBDq20l-Jgcr-8uUvxYeuxNG9D5prGdj0s0OTCtpdIDKNagSxEx-dosUmht-jYMzMqk-TVpVpoMcPNr0qwCjjYBFp1t6mQ7F_B_WQjNSgX8B7B_cug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20188678</pqid></control><display><type>article</type><title>A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco</title><source>Elsevier ScienceDirect Journals Complete</source><creator>NFAOUI, H ; ESSIARAB, H ; SAYIGH, A. A. M</creator><creatorcontrib>NFAOUI, H ; ESSIARAB, H ; SAYIGH, A. A. M</creatorcontrib><description>Time series of then years of Hourly Average Wind Speed, HAWS, data from Tangiers station are analysed on a statistical basis by applying the Markovian process. The limiting behaviour of the Markov chain is then examined and compared to the histogram of observed wind speed. It was found that a 12x12 transition probability matrix was necessary to generate an acceptable synthetic time series. The manner in which the Markovian model can be used to generate wind speed time series are also described. Using the transition probability matrix developed from the real wind data, the synthetic wind speed time series are generated. The comparison between the real wind speed and the synthetic one shows that the statistical characteristics of wind speed are faithfully reproduced. The synthetic HAWS may be utilised as input data for any wind energy system.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/S0960-1481(03)00143-5</identifier><language>eng</language><publisher>Oxford: Elsevier Science</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Natural energy ; Wind energy</subject><ispartof>Renewable energy, 2004-07, Vol.29 (8), p.1407-1418</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-c55df6d5d3e64690c158628a86534e97727c8cc307657e08f037bd45608f8ad53</citedby><cites>FETCH-LOGICAL-c312t-c55df6d5d3e64690c158628a86534e97727c8cc307657e08f037bd45608f8ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15581970$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NFAOUI, H</creatorcontrib><creatorcontrib>ESSIARAB, H</creatorcontrib><creatorcontrib>SAYIGH, A. A. M</creatorcontrib><title>A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco</title><title>Renewable energy</title><description>Time series of then years of Hourly Average Wind Speed, HAWS, data from Tangiers station are analysed on a statistical basis by applying the Markovian process. The limiting behaviour of the Markov chain is then examined and compared to the histogram of observed wind speed. It was found that a 12x12 transition probability matrix was necessary to generate an acceptable synthetic time series. The manner in which the Markovian model can be used to generate wind speed time series are also described. Using the transition probability matrix developed from the real wind data, the synthetic wind speed time series are generated. The comparison between the real wind speed and the synthetic one shows that the statistical characteristics of wind speed are faithfully reproduced. The synthetic HAWS may be utilised as input data for any wind energy system.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Wind energy</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouK7-BCEXRcHqpGk-epTFL3Dx4HrxEmKartG2WTNdxX9v1130NDPwzLzDQ8ghg3MGTF48QikhY4VmJ8BPAVjBM7FFRkyrMgOp820y-kN2yR7i2wAJrYoReb6k2Ef3arEPjk5teo-fdBhDR9tY-YbWMVEM7bKxfejm9Ct0FcWF9xXtQ-sp-hQ8UtvTme3mwSc8o9OYonNxn-zUtkF_sKlj8nR9NZvcZvcPN3eTy_vMcZb3mROiqmUlKu5lIUtww2cy11ZLwQtfKpUrp53joKRQHnQNXL1UhZBDq20l-Jgcr-8uUvxYeuxNG9D5prGdj0s0OTCtpdIDKNagSxEx-dosUmht-jYMzMqk-TVpVpoMcPNr0qwCjjYBFp1t6mQ7F_B_WQjNSgX8B7B_cug</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>NFAOUI, H</creator><creator>ESSIARAB, H</creator><creator>SAYIGH, A. A. M</creator><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20040701</creationdate><title>A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco</title><author>NFAOUI, H ; ESSIARAB, H ; SAYIGH, A. A. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-c55df6d5d3e64690c158628a86534e97727c8cc307657e08f037bd45608f8ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NFAOUI, H</creatorcontrib><creatorcontrib>ESSIARAB, H</creatorcontrib><creatorcontrib>SAYIGH, A. A. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NFAOUI, H</au><au>ESSIARAB, H</au><au>SAYIGH, A. A. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco</atitle><jtitle>Renewable energy</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>29</volume><issue>8</issue><spage>1407</spage><epage>1418</epage><pages>1407-1418</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Time series of then years of Hourly Average Wind Speed, HAWS, data from Tangiers station are analysed on a statistical basis by applying the Markovian process. The limiting behaviour of the Markov chain is then examined and compared to the histogram of observed wind speed. It was found that a 12x12 transition probability matrix was necessary to generate an acceptable synthetic time series. The manner in which the Markovian model can be used to generate wind speed time series are also described. Using the transition probability matrix developed from the real wind data, the synthetic wind speed time series are generated. The comparison between the real wind speed and the synthetic one shows that the statistical characteristics of wind speed are faithfully reproduced. The synthetic HAWS may be utilised as input data for any wind energy system.</abstract><cop>Oxford</cop><pub>Elsevier Science</pub><doi>10.1016/S0960-1481(03)00143-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2004-07, Vol.29 (8), p.1407-1418
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_20188678
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Energy
Exact sciences and technology
Natural energy
Wind energy
title A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20Markov%20chain%20model%20for%20simulating%20wind%20speed%20time%20series%20at%20Tangiers,%20Morocco&rft.jtitle=Renewable%20energy&rft.au=NFAOUI,%20H&rft.date=2004-07-01&rft.volume=29&rft.issue=8&rft.spage=1407&rft.epage=1418&rft.pages=1407-1418&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/S0960-1481(03)00143-5&rft_dat=%3Cproquest_cross%3E20188678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20188678&rft_id=info:pmid/&rfr_iscdi=true