Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging
Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-04, Vol.90 (8), p.5007-5014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5014 |
---|---|
container_issue | 8 |
container_start_page | 5007 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Peterson, Eric M Harris, Joel M |
description | Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements. |
doi_str_mv | 10.1021/acs.analchem.7b04512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2018670712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104172662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPhDxCyxIZNhmc7sZNlVSgdUWBBu44c-7l15cTFTpCmO_4cj2amCxZs7IXPvX56h5C3DNYMOPuoTV7rSQdzh-NaDVA3jD8jK9ZwqGTb8udkBQCi4grghLzK-R6AMWDyJTnhXaOUYmpF_mwsTrN33ujZx4lGRzeT9b-9XXSgm3GMgw_-ES399P2MfosBzRIw02FLr-_QJ3q5HZK3_nEf_-onnL3J9Cb76Zb-LEfA6hijF2GJCbPByWAp17fl_TV54XTI-OZwn5Kbi8_X55fV1Y8vm_Ozq0rXTMyV7oxE61oEoaS1unX1wOTgGts5ZbnQWgnNtRxE56SQZRv10LSy66RmEowQp-TDvvchxV8L5rkffZkkBD1hXHLPgbVSgWK8oO__Qe_jksquC8WgZopLuaPqPWVSzDmh6x-SH3Xa9gz6naK-KOqPivqDohJ7dyhfhhHtU-jopACwB3bxp4__2_kXvgahlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104172662</pqid></control><display><type>article</type><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Peterson, Eric M ; Harris, Joel M</creator><creatorcontrib>Peterson, Eric M ; Harris, Joel M</creatorcontrib><description>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b04512</identifier><identifier>PMID: 29577717</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA chips ; DNA Probes - chemistry ; DNA Probes - metabolism ; Fluorescence ; Fluorescent Dyes - chemistry ; Hybridization ; Image resolution ; Immobilized Nucleic Acids - analysis ; Immobilized Nucleic Acids - metabolism ; Kinetics ; Maximum likelihood estimation ; Nucleic Acid Hybridization - methods ; Strands ; Target recognition ; Thymine</subject><ispartof>Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5007-5014</ispartof><rights>Copyright American Chemical Society Apr 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</citedby><cites>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</cites><orcidid>0000-0002-7081-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b04512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b04512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29577717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Eric M</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA chips</subject><subject>DNA Probes - chemistry</subject><subject>DNA Probes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Hybridization</subject><subject>Image resolution</subject><subject>Immobilized Nucleic Acids - analysis</subject><subject>Immobilized Nucleic Acids - metabolism</subject><subject>Kinetics</subject><subject>Maximum likelihood estimation</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>Strands</subject><subject>Target recognition</subject><subject>Thymine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPhDxCyxIZNhmc7sZNlVSgdUWBBu44c-7l15cTFTpCmO_4cj2amCxZs7IXPvX56h5C3DNYMOPuoTV7rSQdzh-NaDVA3jD8jK9ZwqGTb8udkBQCi4grghLzK-R6AMWDyJTnhXaOUYmpF_mwsTrN33ujZx4lGRzeT9b-9XXSgm3GMgw_-ES399P2MfosBzRIw02FLr-_QJ3q5HZK3_nEf_-onnL3J9Cb76Zb-LEfA6hijF2GJCbPByWAp17fl_TV54XTI-OZwn5Kbi8_X55fV1Y8vm_Ozq0rXTMyV7oxE61oEoaS1unX1wOTgGts5ZbnQWgnNtRxE56SQZRv10LSy66RmEowQp-TDvvchxV8L5rkffZkkBD1hXHLPgbVSgWK8oO__Qe_jksquC8WgZopLuaPqPWVSzDmh6x-SH3Xa9gz6naK-KOqPivqDohJ7dyhfhhHtU-jopACwB3bxp4__2_kXvgahlw</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Peterson, Eric M</creator><creator>Harris, Joel M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7081-8188</orcidid></search><sort><creationdate>20180417</creationdate><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><author>Peterson, Eric M ; Harris, Joel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA chips</topic><topic>DNA Probes - chemistry</topic><topic>DNA Probes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Hybridization</topic><topic>Image resolution</topic><topic>Immobilized Nucleic Acids - analysis</topic><topic>Immobilized Nucleic Acids - metabolism</topic><topic>Kinetics</topic><topic>Maximum likelihood estimation</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>Strands</topic><topic>Target recognition</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Eric M</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Eric M</au><au>Harris, Joel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>90</volume><issue>8</issue><spage>5007</spage><epage>5014</epage><pages>5007-5014</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29577717</pmid><doi>10.1021/acs.analchem.7b04512</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7081-8188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5007-5014 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2018670712 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Chemistry Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA chips DNA Probes - chemistry DNA Probes - metabolism Fluorescence Fluorescent Dyes - chemistry Hybridization Image resolution Immobilized Nucleic Acids - analysis Immobilized Nucleic Acids - metabolism Kinetics Maximum likelihood estimation Nucleic Acid Hybridization - methods Strands Target recognition Thymine |
title | Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Individual%20Immobilized%20DNA%20Molecules%20by%20Their%20Hybridization%20Kinetics%20Using%20Single-Molecule%20Fluorescence%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Peterson,%20Eric%20M&rft.date=2018-04-17&rft.volume=90&rft.issue=8&rft.spage=5007&rft.epage=5014&rft.pages=5007-5014&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b04512&rft_dat=%3Cproquest_cross%3E2104172662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104172662&rft_id=info:pmid/29577717&rfr_iscdi=true |