Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging

Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-04, Vol.90 (8), p.5007-5014
Hauptverfasser: Peterson, Eric M, Harris, Joel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5014
container_issue 8
container_start_page 5007
container_title Analytical chemistry (Washington)
container_volume 90
creator Peterson, Eric M
Harris, Joel M
description Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.
doi_str_mv 10.1021/acs.analchem.7b04512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2018670712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104172662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPhDxCyxIZNhmc7sZNlVSgdUWBBu44c-7l15cTFTpCmO_4cj2amCxZs7IXPvX56h5C3DNYMOPuoTV7rSQdzh-NaDVA3jD8jK9ZwqGTb8udkBQCi4grghLzK-R6AMWDyJTnhXaOUYmpF_mwsTrN33ujZx4lGRzeT9b-9XXSgm3GMgw_-ES399P2MfosBzRIw02FLr-_QJ3q5HZK3_nEf_-onnL3J9Cb76Zb-LEfA6hijF2GJCbPByWAp17fl_TV54XTI-OZwn5Kbi8_X55fV1Y8vm_Ozq0rXTMyV7oxE61oEoaS1unX1wOTgGts5ZbnQWgnNtRxE56SQZRv10LSy66RmEowQp-TDvvchxV8L5rkffZkkBD1hXHLPgbVSgWK8oO__Qe_jksquC8WgZopLuaPqPWVSzDmh6x-SH3Xa9gz6naK-KOqPivqDohJ7dyhfhhHtU-jopACwB3bxp4__2_kXvgahlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104172662</pqid></control><display><type>article</type><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Peterson, Eric M ; Harris, Joel M</creator><creatorcontrib>Peterson, Eric M ; Harris, Joel M</creatorcontrib><description>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b04512</identifier><identifier>PMID: 29577717</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA chips ; DNA Probes - chemistry ; DNA Probes - metabolism ; Fluorescence ; Fluorescent Dyes - chemistry ; Hybridization ; Image resolution ; Immobilized Nucleic Acids - analysis ; Immobilized Nucleic Acids - metabolism ; Kinetics ; Maximum likelihood estimation ; Nucleic Acid Hybridization - methods ; Strands ; Target recognition ; Thymine</subject><ispartof>Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5007-5014</ispartof><rights>Copyright American Chemical Society Apr 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</citedby><cites>FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</cites><orcidid>0000-0002-7081-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b04512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b04512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29577717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Eric M</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA chips</subject><subject>DNA Probes - chemistry</subject><subject>DNA Probes - metabolism</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Hybridization</subject><subject>Image resolution</subject><subject>Immobilized Nucleic Acids - analysis</subject><subject>Immobilized Nucleic Acids - metabolism</subject><subject>Kinetics</subject><subject>Maximum likelihood estimation</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>Strands</subject><subject>Target recognition</subject><subject>Thymine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPhDxCyxIZNhmc7sZNlVSgdUWBBu44c-7l15cTFTpCmO_4cj2amCxZs7IXPvX56h5C3DNYMOPuoTV7rSQdzh-NaDVA3jD8jK9ZwqGTb8udkBQCi4grghLzK-R6AMWDyJTnhXaOUYmpF_mwsTrN33ujZx4lGRzeT9b-9XXSgm3GMgw_-ES399P2MfosBzRIw02FLr-_QJ3q5HZK3_nEf_-onnL3J9Cb76Zb-LEfA6hijF2GJCbPByWAp17fl_TV54XTI-OZwn5Kbi8_X55fV1Y8vm_Ozq0rXTMyV7oxE61oEoaS1unX1wOTgGts5ZbnQWgnNtRxE56SQZRv10LSy66RmEowQp-TDvvchxV8L5rkffZkkBD1hXHLPgbVSgWK8oO__Qe_jksquC8WgZopLuaPqPWVSzDmh6x-SH3Xa9gz6naK-KOqPivqDohJ7dyhfhhHtU-jopACwB3bxp4__2_kXvgahlw</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Peterson, Eric M</creator><creator>Harris, Joel M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7081-8188</orcidid></search><sort><creationdate>20180417</creationdate><title>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</title><author>Peterson, Eric M ; Harris, Joel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-a9c6edf8e0376dda8f4b16bf5d9f7d23aa73a2a6b39f6364514b586996a160c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA chips</topic><topic>DNA Probes - chemistry</topic><topic>DNA Probes - metabolism</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Hybridization</topic><topic>Image resolution</topic><topic>Immobilized Nucleic Acids - analysis</topic><topic>Immobilized Nucleic Acids - metabolism</topic><topic>Kinetics</topic><topic>Maximum likelihood estimation</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>Strands</topic><topic>Target recognition</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Eric M</creatorcontrib><creatorcontrib>Harris, Joel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Eric M</au><au>Harris, Joel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>90</volume><issue>8</issue><spage>5007</spage><epage>5014</epage><pages>5007-5014</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Single-molecule fluorescence methods can count molecules without calibration, measure kinetics at equilibrium, and observe rare events that cannot be detected in an ensemble measurement. We employ total internal reflection fluorescence microscopy to monitor hybridization kinetics between individual spatially resolved target DNA molecules immobilized at a glass interface and fluorescently labeled complementary probe DNA in free solution. Using super-resolution imaging, immobilized target DNA molecules are located with 36 nm precision, and their individual duplex formation and dissociation kinetics with labeled DNA probe strands are measured at site densities much greater than the diffraction limit. The purpose of this study is to evaluate uncertainties in identifying these individual target molecules based on their duplex dissociation kinetics, which can be used to distinguish target molecule sequences randomly immobilized in mixed-target samples. Hybridization kinetics of individual target molecules are determined from maximum likelihood estimation of their dissociation times determined from a sample of hybridization events at each target molecule. The dissociation time distributions thus estimated are sufficiently narrow to allow kinetic discrimination of different target sequences. For example, a single-base thymine-to-guanine substitution on immobilized strands produces a 2.5-fold difference in dissociation rates of complementary probes, allowing for the identification of individual target DNA molecules by their dissociation rates with 95% accuracy. This methodology represents a step toward high-density single-molecule DNA microarray sensors and a powerful tool to investigate the kinetics of hybridization at surfaces at the molecular level, providing information that cannot be acquired in ensemble measurements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29577717</pmid><doi>10.1021/acs.analchem.7b04512</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7081-8188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-04, Vol.90 (8), p.5007-5014
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2018670712
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Chemistry
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
DNA chips
DNA Probes - chemistry
DNA Probes - metabolism
Fluorescence
Fluorescent Dyes - chemistry
Hybridization
Image resolution
Immobilized Nucleic Acids - analysis
Immobilized Nucleic Acids - metabolism
Kinetics
Maximum likelihood estimation
Nucleic Acid Hybridization - methods
Strands
Target recognition
Thymine
title Identification of Individual Immobilized DNA Molecules by Their Hybridization Kinetics Using Single-Molecule Fluorescence Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Individual%20Immobilized%20DNA%20Molecules%20by%20Their%20Hybridization%20Kinetics%20Using%20Single-Molecule%20Fluorescence%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Peterson,%20Eric%20M&rft.date=2018-04-17&rft.volume=90&rft.issue=8&rft.spage=5007&rft.epage=5014&rft.pages=5007-5014&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b04512&rft_dat=%3Cproquest_cross%3E2104172662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104172662&rft_id=info:pmid/29577717&rfr_iscdi=true