Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction

Electrochemical conversion of CO2 to value‐added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion‐adsorption strategy is reported to construct highly active graphene‐based catalysts for CO2 reduction to CO. The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-05, Vol.30 (18), p.e1706617-n/a
Hauptverfasser: Bi, Wentuan, Li, Xiaogang, You, Rui, Chen, Minglong, Yuan, Ruilin, Huang, Weixin, Wu, Xiaojun, Chu, Wangsheng, Wu, Changzheng, Xie, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e1706617
container_title Advanced materials (Weinheim)
container_volume 30
creator Bi, Wentuan
Li, Xiaogang
You, Rui
Chen, Minglong
Yuan, Ruilin
Huang, Weixin
Wu, Xiaojun
Chu, Wangsheng
Wu, Changzheng
Xie, Yi
description Electrochemical conversion of CO2 to value‐added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion‐adsorption strategy is reported to construct highly active graphene‐based catalysts for CO2 reduction to CO. The isolated transition metal cyclam‐like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid‐leaching procedures, this solution‐chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high‐efficiency catalysts for CO2 reduction and beyond. A feasible ion‐adsorption strategy is highlighted to bring unprecedentedly efficient and selective CO2 reduction activity to nitrogen‐doped graphene. Free from high‐temperature pyrolysis and acid leaching, this solution‐chemistry route incorporating molecular‐catalyst moieties into a highly conductive carbon matrix provides a practical approach to design high‐efficiency electrocatalysts for CO2 reduction and related catalytic reactions.
doi_str_mv 10.1002/adma.201706617
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2018662731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033713290</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3697-94b8ad313f7cb24a58f53510f4e862aadc26e0b4d8b1884f0be7f4025e224e443</originalsourceid><addsrcrecordid>eNpdkctKxEAQRRtRcBzdum5w4yZa_UgnWQ7ja8BR8LEOnaR6bEm6xzwUXQn-gN_ol9ijMgtXxaUOt4p7CdlncMQA-LGuGn3EgSWgFEs2yIjFnEUSsniTjCATcZQpmW6Tna57BIBMgRqRj9uhNbpEOmsaX9javuneeke9oXetdp39UXPsdU1n3nU0qCvbt36B7uv988QvsaLnrV4-oEN6gzo4WLegF3bxEPanxtjSouupdhW9xRrL3j4jnV7zAFdDubLfJVtG1x3u_c0xuT87vZteRJfX57Pp5DJaCJUlUSaLVFeCCZOUBZc6Tk0sYgZGYqq41lXJFUIhq7RgaSoNFJgYCTxGziVKKcbk8Nd32fqnAbs-b2xXYl1rh37o8pBdqhRPwokxOfiHPvqhdeG7QAmRMMEzCFT2S73YGl_zZWsb3b7mDPJVIfmqkHxdSD45mU_WSnwDFV2Dzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033713290</pqid></control><display><type>article</type><title>Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bi, Wentuan ; Li, Xiaogang ; You, Rui ; Chen, Minglong ; Yuan, Ruilin ; Huang, Weixin ; Wu, Xiaojun ; Chu, Wangsheng ; Wu, Changzheng ; Xie, Yi</creator><creatorcontrib>Bi, Wentuan ; Li, Xiaogang ; You, Rui ; Chen, Minglong ; Yuan, Ruilin ; Huang, Weixin ; Wu, Xiaojun ; Chu, Wangsheng ; Wu, Changzheng ; Xie, Yi</creatorcontrib><description>Electrochemical conversion of CO2 to value‐added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion‐adsorption strategy is reported to construct highly active graphene‐based catalysts for CO2 reduction to CO. The isolated transition metal cyclam‐like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid‐leaching procedures, this solution‐chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high‐efficiency catalysts for CO2 reduction and beyond. A feasible ion‐adsorption strategy is highlighted to bring unprecedentedly efficient and selective CO2 reduction activity to nitrogen‐doped graphene. Free from high‐temperature pyrolysis and acid leaching, this solution‐chemistry route incorporating molecular‐catalyst moieties into a highly conductive carbon matrix provides a practical approach to design high‐efficiency electrocatalysts for CO2 reduction and related catalytic reactions.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201706617</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysis ; Catalysts ; CO2 reduction ; electrocatalysis ; Graphene ; Ion adsorption ; Leaching ; nitrogen‐doped graphene ; Pyrolysis ; Reduction ; surface modification</subject><ispartof>Advanced materials (Weinheim), 2018-05, Vol.30 (18), p.e1706617-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4416-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201706617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201706617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bi, Wentuan</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>You, Rui</creatorcontrib><creatorcontrib>Chen, Minglong</creatorcontrib><creatorcontrib>Yuan, Ruilin</creatorcontrib><creatorcontrib>Huang, Weixin</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Wu, Changzheng</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><title>Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction</title><title>Advanced materials (Weinheim)</title><description>Electrochemical conversion of CO2 to value‐added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion‐adsorption strategy is reported to construct highly active graphene‐based catalysts for CO2 reduction to CO. The isolated transition metal cyclam‐like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid‐leaching procedures, this solution‐chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high‐efficiency catalysts for CO2 reduction and beyond. A feasible ion‐adsorption strategy is highlighted to bring unprecedentedly efficient and selective CO2 reduction activity to nitrogen‐doped graphene. Free from high‐temperature pyrolysis and acid leaching, this solution‐chemistry route incorporating molecular‐catalyst moieties into a highly conductive carbon matrix provides a practical approach to design high‐efficiency electrocatalysts for CO2 reduction and related catalytic reactions.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CO2 reduction</subject><subject>electrocatalysis</subject><subject>Graphene</subject><subject>Ion adsorption</subject><subject>Leaching</subject><subject>nitrogen‐doped graphene</subject><subject>Pyrolysis</subject><subject>Reduction</subject><subject>surface modification</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctKxEAQRRtRcBzdum5w4yZa_UgnWQ7ja8BR8LEOnaR6bEm6xzwUXQn-gN_ol9ijMgtXxaUOt4p7CdlncMQA-LGuGn3EgSWgFEs2yIjFnEUSsniTjCATcZQpmW6Tna57BIBMgRqRj9uhNbpEOmsaX9javuneeke9oXetdp39UXPsdU1n3nU0qCvbt36B7uv988QvsaLnrV4-oEN6gzo4WLegF3bxEPanxtjSouupdhW9xRrL3j4jnV7zAFdDubLfJVtG1x3u_c0xuT87vZteRJfX57Pp5DJaCJUlUSaLVFeCCZOUBZc6Tk0sYgZGYqq41lXJFUIhq7RgaSoNFJgYCTxGziVKKcbk8Nd32fqnAbs-b2xXYl1rh37o8pBdqhRPwokxOfiHPvqhdeG7QAmRMMEzCFT2S73YGl_zZWsb3b7mDPJVIfmqkHxdSD45mU_WSnwDFV2Dzw</recordid><startdate>20180503</startdate><enddate>20180503</enddate><creator>Bi, Wentuan</creator><creator>Li, Xiaogang</creator><creator>You, Rui</creator><creator>Chen, Minglong</creator><creator>Yuan, Ruilin</creator><creator>Huang, Weixin</creator><creator>Wu, Xiaojun</creator><creator>Chu, Wangsheng</creator><creator>Wu, Changzheng</creator><creator>Xie, Yi</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4416-6358</orcidid></search><sort><creationdate>20180503</creationdate><title>Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction</title><author>Bi, Wentuan ; Li, Xiaogang ; You, Rui ; Chen, Minglong ; Yuan, Ruilin ; Huang, Weixin ; Wu, Xiaojun ; Chu, Wangsheng ; Wu, Changzheng ; Xie, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3697-94b8ad313f7cb24a58f53510f4e862aadc26e0b4d8b1884f0be7f4025e224e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CO2 reduction</topic><topic>electrocatalysis</topic><topic>Graphene</topic><topic>Ion adsorption</topic><topic>Leaching</topic><topic>nitrogen‐doped graphene</topic><topic>Pyrolysis</topic><topic>Reduction</topic><topic>surface modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Wentuan</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>You, Rui</creatorcontrib><creatorcontrib>Chen, Minglong</creatorcontrib><creatorcontrib>Yuan, Ruilin</creatorcontrib><creatorcontrib>Huang, Weixin</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Wu, Changzheng</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Wentuan</au><au>Li, Xiaogang</au><au>You, Rui</au><au>Chen, Minglong</au><au>Yuan, Ruilin</au><au>Huang, Weixin</au><au>Wu, Xiaojun</au><au>Chu, Wangsheng</au><au>Wu, Changzheng</au><au>Xie, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2018-05-03</date><risdate>2018</risdate><volume>30</volume><issue>18</issue><spage>e1706617</spage><epage>n/a</epage><pages>e1706617-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Electrochemical conversion of CO2 to value‐added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion‐adsorption strategy is reported to construct highly active graphene‐based catalysts for CO2 reduction to CO. The isolated transition metal cyclam‐like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid‐leaching procedures, this solution‐chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high‐efficiency catalysts for CO2 reduction and beyond. A feasible ion‐adsorption strategy is highlighted to bring unprecedentedly efficient and selective CO2 reduction activity to nitrogen‐doped graphene. Free from high‐temperature pyrolysis and acid leaching, this solution‐chemistry route incorporating molecular‐catalyst moieties into a highly conductive carbon matrix provides a practical approach to design high‐efficiency electrocatalysts for CO2 reduction and related catalytic reactions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201706617</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4416-6358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-05, Vol.30 (18), p.e1706617-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2018662731
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalysis
Catalysts
CO2 reduction
electrocatalysis
Graphene
Ion adsorption
Leaching
nitrogen‐doped graphene
Pyrolysis
Reduction
surface modification
title Surface Immobilization of Transition Metal Ions on Nitrogen‐Doped Graphene Realizing High‐Efficient and Selective CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Immobilization%20of%20Transition%20Metal%20Ions%20on%20Nitrogen%E2%80%90Doped%20Graphene%20Realizing%20High%E2%80%90Efficient%20and%20Selective%20CO2%20Reduction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Bi,%20Wentuan&rft.date=2018-05-03&rft.volume=30&rft.issue=18&rft.spage=e1706617&rft.epage=n/a&rft.pages=e1706617-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201706617&rft_dat=%3Cproquest_wiley%3E2033713290%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033713290&rft_id=info:pmid/&rfr_iscdi=true