Thermodiffusion of Monovalent Organic Salts in Water
The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion,...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2018-04, Vol.122 (14), p.4093-4100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4100 |
---|---|
container_issue | 14 |
container_start_page | 4093 |
container_title | The journal of physical chemistry. B |
container_volume | 122 |
creator | Sehnem, André Luiz Niether, Doreen Wiegand, Simone Figueiredo Neto, Antônio Martins |
description | The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory. |
doi_str_mv | 10.1021/acs.jpcb.8b01152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2016535285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016535285</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDKT4ETvNiCpeUlEHihgtPyFVYhc7QeLf45LAxmD7Sj7n6J4PgHME5whidC1UnG93Ss4XEiJE8QGYphvm6ZSH48wQZBNwEuMWQkzxgh2DCa4oXSDCpqDYvJvQel1b28fau8zb7Mk7_yka47psHd6Eq1X2LJouZrXLXkVnwik4sqKJ5mx8Z-Dl7nazfMhX6_vH5c0qFwWiXU6ooJiUqMDSSl0YgyFmJZNpi0JTjUqmiSWsUEhViFTpqyx1KW1lJJEmWWfgcsjdBf_Rm9jxto7KNI1wxveRY4gYJakTTVI4SFXwMQZj-S7UrQhfHEG-Z8UTK75nxUdWyXIxpveyNfrP8AsnCa4GwY_V98Glsv_nfQNUxHOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016535285</pqid></control><display><type>article</type><title>Thermodiffusion of Monovalent Organic Salts in Water</title><source>ACS Publications</source><creator>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</creator><creatorcontrib>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</creatorcontrib><description>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b01152</identifier><identifier>PMID: 29558136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-04, Vol.122 (14), p.4093-4100</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</citedby><cites>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</cites><orcidid>0000-0001-6333-1956 ; 0000-0002-3544-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b01152$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b01152$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29558136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehnem, André Luiz</creatorcontrib><creatorcontrib>Niether, Doreen</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><creatorcontrib>Figueiredo Neto, Antônio Martins</creatorcontrib><title>Thermodiffusion of Monovalent Organic Salts in Water</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDKT4ETvNiCpeUlEHihgtPyFVYhc7QeLf45LAxmD7Sj7n6J4PgHME5whidC1UnG93Ss4XEiJE8QGYphvm6ZSH48wQZBNwEuMWQkzxgh2DCa4oXSDCpqDYvJvQel1b28fau8zb7Mk7_yka47psHd6Eq1X2LJouZrXLXkVnwik4sqKJ5mx8Z-Dl7nazfMhX6_vH5c0qFwWiXU6ooJiUqMDSSl0YgyFmJZNpi0JTjUqmiSWsUEhViFTpqyx1KW1lJJEmWWfgcsjdBf_Rm9jxto7KNI1wxveRY4gYJakTTVI4SFXwMQZj-S7UrQhfHEG-Z8UTK75nxUdWyXIxpveyNfrP8AsnCa4GwY_V98Glsv_nfQNUxHOi</recordid><startdate>20180412</startdate><enddate>20180412</enddate><creator>Sehnem, André Luiz</creator><creator>Niether, Doreen</creator><creator>Wiegand, Simone</creator><creator>Figueiredo Neto, Antônio Martins</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0002-3544-2277</orcidid></search><sort><creationdate>20180412</creationdate><title>Thermodiffusion of Monovalent Organic Salts in Water</title><author>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehnem, André Luiz</creatorcontrib><creatorcontrib>Niether, Doreen</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><creatorcontrib>Figueiredo Neto, Antônio Martins</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehnem, André Luiz</au><au>Niether, Doreen</au><au>Wiegand, Simone</au><au>Figueiredo Neto, Antônio Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodiffusion of Monovalent Organic Salts in Water</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-04-12</date><risdate>2018</risdate><volume>122</volume><issue>14</issue><spage>4093</spage><epage>4100</epage><pages>4093-4100</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29558136</pmid><doi>10.1021/acs.jpcb.8b01152</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0002-3544-2277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2018-04, Vol.122 (14), p.4093-4100 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2016535285 |
source | ACS Publications |
title | Thermodiffusion of Monovalent Organic Salts in Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodiffusion%20of%20Monovalent%20Organic%20Salts%20in%20Water&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sehnem,%20Andre%CC%81%20Luiz&rft.date=2018-04-12&rft.volume=122&rft.issue=14&rft.spage=4093&rft.epage=4100&rft.pages=4093-4100&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b01152&rft_dat=%3Cproquest_cross%3E2016535285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016535285&rft_id=info:pmid/29558136&rfr_iscdi=true |