Thermodiffusion of Monovalent Organic Salts in Water

The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2018-04, Vol.122 (14), p.4093-4100
Hauptverfasser: Sehnem, André Luiz, Niether, Doreen, Wiegand, Simone, Figueiredo Neto, Antônio Martins
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4100
container_issue 14
container_start_page 4093
container_title The journal of physical chemistry. B
container_volume 122
creator Sehnem, André Luiz
Niether, Doreen
Wiegand, Simone
Figueiredo Neto, Antônio Martins
description The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.
doi_str_mv 10.1021/acs.jpcb.8b01152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2016535285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016535285</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDKT4ETvNiCpeUlEHihgtPyFVYhc7QeLf45LAxmD7Sj7n6J4PgHME5whidC1UnG93Ss4XEiJE8QGYphvm6ZSH48wQZBNwEuMWQkzxgh2DCa4oXSDCpqDYvJvQel1b28fau8zb7Mk7_yka47psHd6Eq1X2LJouZrXLXkVnwik4sqKJ5mx8Z-Dl7nazfMhX6_vH5c0qFwWiXU6ooJiUqMDSSl0YgyFmJZNpi0JTjUqmiSWsUEhViFTpqyx1KW1lJJEmWWfgcsjdBf_Rm9jxto7KNI1wxveRY4gYJakTTVI4SFXwMQZj-S7UrQhfHEG-Z8UTK75nxUdWyXIxpveyNfrP8AsnCa4GwY_V98Glsv_nfQNUxHOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016535285</pqid></control><display><type>article</type><title>Thermodiffusion of Monovalent Organic Salts in Water</title><source>ACS Publications</source><creator>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</creator><creatorcontrib>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</creatorcontrib><description>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b01152</identifier><identifier>PMID: 29558136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-04, Vol.122 (14), p.4093-4100</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</citedby><cites>FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</cites><orcidid>0000-0001-6333-1956 ; 0000-0002-3544-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b01152$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b01152$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29558136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehnem, André Luiz</creatorcontrib><creatorcontrib>Niether, Doreen</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><creatorcontrib>Figueiredo Neto, Antônio Martins</creatorcontrib><title>Thermodiffusion of Monovalent Organic Salts in Water</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDKT4ETvNiCpeUlEHihgtPyFVYhc7QeLf45LAxmD7Sj7n6J4PgHME5whidC1UnG93Ss4XEiJE8QGYphvm6ZSH48wQZBNwEuMWQkzxgh2DCa4oXSDCpqDYvJvQel1b28fau8zb7Mk7_yka47psHd6Eq1X2LJouZrXLXkVnwik4sqKJ5mx8Z-Dl7nazfMhX6_vH5c0qFwWiXU6ooJiUqMDSSl0YgyFmJZNpi0JTjUqmiSWsUEhViFTpqyx1KW1lJJEmWWfgcsjdBf_Rm9jxto7KNI1wxveRY4gYJakTTVI4SFXwMQZj-S7UrQhfHEG-Z8UTK75nxUdWyXIxpveyNfrP8AsnCa4GwY_V98Glsv_nfQNUxHOi</recordid><startdate>20180412</startdate><enddate>20180412</enddate><creator>Sehnem, André Luiz</creator><creator>Niether, Doreen</creator><creator>Wiegand, Simone</creator><creator>Figueiredo Neto, Antônio Martins</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0002-3544-2277</orcidid></search><sort><creationdate>20180412</creationdate><title>Thermodiffusion of Monovalent Organic Salts in Water</title><author>Sehnem, André Luiz ; Niether, Doreen ; Wiegand, Simone ; Figueiredo Neto, Antônio Martins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-35a5237142bfbd4ee202676b2524d5d176d3f364c1c913967677d7bf9eb3be523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehnem, André Luiz</creatorcontrib><creatorcontrib>Niether, Doreen</creatorcontrib><creatorcontrib>Wiegand, Simone</creatorcontrib><creatorcontrib>Figueiredo Neto, Antônio Martins</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehnem, André Luiz</au><au>Niether, Doreen</au><au>Wiegand, Simone</au><au>Figueiredo Neto, Antônio Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodiffusion of Monovalent Organic Salts in Water</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-04-12</date><risdate>2018</risdate><volume>122</volume><issue>14</issue><spage>4093</spage><epage>4100</epage><pages>4093-4100</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The ionic Soret effect induced by temperature gradients is investigated in organic electrolytes (tetramethylammonium and tetrabutylammonium hydroxides) dispersed in water using a holographic grating experiment. We report the influences of temperature and salt concentrations on the Soret, diffusion, and thermal diffusion coefficients. Experimental results to the thermal diffusion coefficient are compared with a theoretical description for thermodiffusion of Brownian particles in liquids based in the thermal expansion of the liquid solution. It is observed that the obtained thermal diffusion coefficients for the organic electrolytes present a similar temperature dependence as the theoretical prediction. Comparing the experimental results for the organic and common inorganic salts it is proposed an additional physical mechanism as the cause to the different thermal diffusion coefficients in both types of salt. We propose that the temperature dependence of hydration free energy gives rise to a force term that also leads to ion migration in a temperature gradient. We describe the thermal diffusion results as a competition between thermal expansion and hydration effects. The specific structure each type of ion cause in water molecules is considered in the heat of transport theory to describe thermal diffusion of electrolytes. A qualitative agreement is seen between our results and the classical heat of transport theory.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29558136</pmid><doi>10.1021/acs.jpcb.8b01152</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6333-1956</orcidid><orcidid>https://orcid.org/0000-0002-3544-2277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-04, Vol.122 (14), p.4093-4100
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2016535285
source ACS Publications
title Thermodiffusion of Monovalent Organic Salts in Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodiffusion%20of%20Monovalent%20Organic%20Salts%20in%20Water&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sehnem,%20Andre%CC%81%20Luiz&rft.date=2018-04-12&rft.volume=122&rft.issue=14&rft.spage=4093&rft.epage=4100&rft.pages=4093-4100&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b01152&rft_dat=%3Cproquest_cross%3E2016535285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016535285&rft_id=info:pmid/29558136&rfr_iscdi=true