Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation

Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current–voltage hysteresis behavior. This work is dedicated to the investigation of the beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-04, Vol.10 (14), p.11722-11731
Hauptverfasser: Shih, Yen-Chen, Wang, Leeyih, Hsieh, Hsiao-Chi, Lin, King-Fu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current–voltage hysteresis behavior. This work is dedicated to the investigation of the behavior of charged species at the compact TiO2/OHP interface with respect to electrode polarization in PSC devices. By providing a comprehensive discussion of open-circuit voltage (V OC) buildup and V OC decay under illumination and in the dark for the PSCs modified with [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) at the TiO2/OHP interface and their corresponding electrochemical impedance spectroscopies (EISs), a justified mechanism is proposed attempting to elucidate the dynamics of interfacial species with respect to the time and frequency domains. Our results demonstrate that the retarded V OC buildup and decay observed in PSC devices are related to the formation of bound charges in TiO2, which is essential to neutralize the oppositely charged ions accumulating at the OHP side. Besides, inserting a thicker PCBM at the TiO2/OHP interface as a passivation layer can alleviate the electrode polarization more efficiently as verified by the low dielectric constant measured from EIS. Moreover, photoluminescence measurements indicate that PCBM at the TiO2/OHP interface is capable of passivating a trap state and improving charge transfer. However, with respect to the time scale investigated in this work, the reduction of the hysteresis behavior on a millisecond scale is more likely due to less bound charge formation at the interface rather than shallow trap-state passivation by PCBM. After all, this work comprehensively demonstrates the interfacial properties of PSCs associated with PCBM passivation and helps to further understand its impact on charging/discharging as well as device performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b03116