Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study

Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth’s atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-04, Vol.122 (13), p.3470-3479
Hauptverfasser: Wang, Chun-Yu, Jiang, Shuai, Liu, Yi-Rong, Wen, Hui, Wang, Zhong-Quan, Han, Ya-Juan, Huang, Teng, Huang, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3479
container_issue 13
container_start_page 3470
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 122
creator Wang, Chun-Yu
Jiang, Shuai
Liu, Yi-Rong
Wen, Hui
Wang, Zhong-Quan
Han, Ya-Juan
Huang, Teng
Huang, Wei
description Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth’s atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (m = 1–3, n = 0–4) clusters at the PW91PW91/6-311++G­(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (n = 0–4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)­(CH3NH2)­(H2SO4)2 clusters could reach that of total hydrated (NH3)­(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)­(CH3NH2)­(H2SO4)­(H2O), (NH3)­(CH3NH2)­(H2SO4)2 and (NH3)­(CH3NH2)­(H2SO4)3 clusters, three relative abundant clusters in (NH3)­(CH3NH2)­(H2SO4) m (H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.
doi_str_mv 10.1021/acs.jpca.8b00681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2014954979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014954979</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-7c73419e76658cd59c73a52897aaa6e399c7caee865104d9054afba060a5bdc33</originalsourceid><addsrcrecordid>eNp1kDFv2zAQhYmiQe2m3TMVHDNEzpESJXE0DCcpkDZD0lk4U6dIhiS6JDV4y9_o3-svCV072Trdu8N7D7iPsQsBCwFSXKPxi-3O4KLcAOSl-MDmQklIlBTqY9RQ6kTlqZ6xz95vAUCkMvvEZlKrrJA6n7P-cT-Se-586AxfNw2ZwG3Dl8Ngxw45jjX_QaHd9zh0I3E78p-T6QlDF2U38tASX6ML7d-XP54vw2D9riVHC77kTy1ZR7EYe_4Ypnr_hZ012Hv6eprn7NfN-ml1l9w_3H5fLe8TzECGpDBFmglNRZ6r0tRKxx2VLHWBiDmlOh4MEpW5EpDVGlSGzQYhB1Sb2qTpObs89u6c_T2RD9XQeUN9jyPZyVcSRBYJ6EJHKxytxlnvHTXVznUDun0loDowriLj6sC4OjGOkW-n9mkzUP0eeIMaDVdHw7-ondwYn_1_3yuWiIlv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014954979</pqid></control><display><type>article</type><title>Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study</title><source>ACS Publications</source><creator>Wang, Chun-Yu ; Jiang, Shuai ; Liu, Yi-Rong ; Wen, Hui ; Wang, Zhong-Quan ; Han, Ya-Juan ; Huang, Teng ; Huang, Wei</creator><creatorcontrib>Wang, Chun-Yu ; Jiang, Shuai ; Liu, Yi-Rong ; Wen, Hui ; Wang, Zhong-Quan ; Han, Ya-Juan ; Huang, Teng ; Huang, Wei</creatorcontrib><description>Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth’s atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (m = 1–3, n = 0–4) clusters at the PW91PW91/6-311++G­(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (n = 0–4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)­(CH3NH2)­(H2SO4)2 clusters could reach that of total hydrated (NH3)­(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)­(CH3NH2)­(H2SO4)­(H2O), (NH3)­(CH3NH2)­(H2SO4)2 and (NH3)­(CH3NH2)­(H2SO4)3 clusters, three relative abundant clusters in (NH3)­(CH3NH2)­(H2SO4) m (H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.8b00681</identifier><identifier>PMID: 29547296</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2018-04, Vol.122 (13), p.3470-3479</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-7c73419e76658cd59c73a52897aaa6e399c7caee865104d9054afba060a5bdc33</citedby><cites>FETCH-LOGICAL-a402t-7c73419e76658cd59c73a52897aaa6e399c7caee865104d9054afba060a5bdc33</cites><orcidid>0000-0001-8147-386X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.8b00681$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.8b00681$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29547296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Yu</creatorcontrib><creatorcontrib>Jiang, Shuai</creatorcontrib><creatorcontrib>Liu, Yi-Rong</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Wang, Zhong-Quan</creatorcontrib><creatorcontrib>Han, Ya-Juan</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth’s atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (m = 1–3, n = 0–4) clusters at the PW91PW91/6-311++G­(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (n = 0–4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)­(CH3NH2)­(H2SO4)2 clusters could reach that of total hydrated (NH3)­(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)­(CH3NH2)­(H2SO4)­(H2O), (NH3)­(CH3NH2)­(H2SO4)2 and (NH3)­(CH3NH2)­(H2SO4)3 clusters, three relative abundant clusters in (NH3)­(CH3NH2)­(H2SO4) m (H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFv2zAQhYmiQe2m3TMVHDNEzpESJXE0DCcpkDZD0lk4U6dIhiS6JDV4y9_o3-svCV072Trdu8N7D7iPsQsBCwFSXKPxi-3O4KLcAOSl-MDmQklIlBTqY9RQ6kTlqZ6xz95vAUCkMvvEZlKrrJA6n7P-cT-Se-586AxfNw2ZwG3Dl8Ngxw45jjX_QaHd9zh0I3E78p-T6QlDF2U38tASX6ML7d-XP54vw2D9riVHC77kTy1ZR7EYe_4Ypnr_hZ012Hv6eprn7NfN-ml1l9w_3H5fLe8TzECGpDBFmglNRZ6r0tRKxx2VLHWBiDmlOh4MEpW5EpDVGlSGzQYhB1Sb2qTpObs89u6c_T2RD9XQeUN9jyPZyVcSRBYJ6EJHKxytxlnvHTXVznUDun0loDowriLj6sC4OjGOkW-n9mkzUP0eeIMaDVdHw7-ondwYn_1_3yuWiIlv</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Wang, Chun-Yu</creator><creator>Jiang, Shuai</creator><creator>Liu, Yi-Rong</creator><creator>Wen, Hui</creator><creator>Wang, Zhong-Quan</creator><creator>Han, Ya-Juan</creator><creator>Huang, Teng</creator><creator>Huang, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8147-386X</orcidid></search><sort><creationdate>20180405</creationdate><title>Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study</title><author>Wang, Chun-Yu ; Jiang, Shuai ; Liu, Yi-Rong ; Wen, Hui ; Wang, Zhong-Quan ; Han, Ya-Juan ; Huang, Teng ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-7c73419e76658cd59c73a52897aaa6e399c7caee865104d9054afba060a5bdc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Yu</creatorcontrib><creatorcontrib>Jiang, Shuai</creatorcontrib><creatorcontrib>Liu, Yi-Rong</creatorcontrib><creatorcontrib>Wen, Hui</creatorcontrib><creatorcontrib>Wang, Zhong-Quan</creatorcontrib><creatorcontrib>Han, Ya-Juan</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Yu</au><au>Jiang, Shuai</au><au>Liu, Yi-Rong</au><au>Wen, Hui</au><au>Wang, Zhong-Quan</au><au>Han, Ya-Juan</au><au>Huang, Teng</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>122</volume><issue>13</issue><spage>3470</spage><epage>3479</epage><pages>3470-3479</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth’s atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (m = 1–3, n = 0–4) clusters at the PW91PW91/6-311++G­(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)­(CH3NH2)­(H2SO4) m (H2O) n (n = 0–4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)­(CH3NH2)­(H2SO4)2 clusters could reach that of total hydrated (NH3)­(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)­(CH3NH2)­(H2SO4)­(H2O), (NH3)­(CH3NH2)­(H2SO4)2 and (NH3)­(CH3NH2)­(H2SO4)3 clusters, three relative abundant clusters in (NH3)­(CH3NH2)­(H2SO4) m (H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29547296</pmid><doi>10.1021/acs.jpca.8b00681</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8147-386X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-04, Vol.122 (13), p.3470-3479
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2014954979
source ACS Publications
title Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Effect%20of%20Ammonia%20and%20Methylamine%20on%20Nucleation%20in%20the%20Earth%E2%80%99s%20Atmosphere.%20A%20Theoretical%20Study&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wang,%20Chun-Yu&rft.date=2018-04-05&rft.volume=122&rft.issue=13&rft.spage=3470&rft.epage=3479&rft.pages=3470-3479&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.8b00681&rft_dat=%3Cproquest_cross%3E2014954979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014954979&rft_id=info:pmid/29547296&rfr_iscdi=true