Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival

Anti-Müllerian hormone (AMH) is an ovarian regulator that affects folliculogenesis. AMH inhibits the developmental activation of the dormant primordial follicles and the oocyte within. In more mature follicles, AMH reduces granulosa cell sensitivity to follicle-stimulating hormone (FSH). We examined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2018-05, Vol.237 (2), p.153-163
Hauptverfasser: Pankhurst, Michael W, Kelley, Rebecca L, Sanders, Rachel L, Woodcock, Savana R, Oorschot, Dorothy E, Batchelor, Nicola J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anti-Müllerian hormone (AMH) is an ovarian regulator that affects folliculogenesis. AMH inhibits the developmental activation of the dormant primordial follicles and the oocyte within. In more mature follicles, AMH reduces granulosa cell sensitivity to follicle-stimulating hormone (FSH). We examined the effects of AMH overexpression on the stages of ovarian folliculogenesis, and the development of embryos, with a transgenic mouse that overexpresses human AMH in central nervous system neurons under the control of the mouse Thy1.2 promoter (Thy1.2-AMH Tg mice). These mice are severely sub-fertile, despite relatively normal ovulation rates. The embryos of Thy1.2-AMHTg females exhibited delayed preimplantation development and extensive mid-gestation fetal resorption. Young Thy1.2-AMHTg mouse ovaries exhibited only a slight reduction in the rate of primordial follicle activation but large declines in the number of developing follicles surviving past the primary stage. It was expected that Thy1.2-AMHTg mice would retain more primordial follicles as they aged, but at 5 months, their number was significantly reduced relative to wild-type females. These data indicate that moderate elevations in AMH levels can severely restrict reproductive output and the number of developing follicles in the ovary. This evidence suggests that early antral follicles are a target for AMH signaling, which may regulate early follicle survival.
ISSN:0022-0795
1479-6805
1479-6805
DOI:10.1530/JOE-18-0005