Predicting the Band Gaps of Inorganic Solids by Machine Learning

A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-04, Vol.9 (7), p.1668-1673
Hauptverfasser: Zhuo, Ya, Mansouri Tehrani, Aria, Brgoch, Jakoah
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1673
container_issue 7
container_start_page 1668
container_title The journal of physical chemistry letters
container_volume 9
creator Zhuo, Ya
Mansouri Tehrani, Aria
Brgoch, Jakoah
description A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.
doi_str_mv 10.1021/acs.jpclett.8b00124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2013514943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013514943</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-8e0767b701c61da7c4317430a0be6e5f7465ec050a6c66dd441bb70d329c4e7b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwBEjII0taO3bsZAMqKJWKQAJmy7EvbarUCXYy9O0JNCAmprvh-__TfQhdUjKlJKYzbcJ025gK2naa5oTQmB-hMc14GkmaJsd_9hE6C2FLiMhIKk_RKM4SFoskHaObFw-2NG3p1rjdAL7TzuKFbgKuC7x0tV9rVxr8WlelDTjf4ydtNqUDvALtXZ86RyeFrgJcDHOC3h_u3-aP0ep5sZzfriLNKW2jFIgUMpeEGkGtloYzKjkjmuQgICkkFwkYkhAtjBDWck7znrYszgwHmbMJuj70Nr7-6CC0alcGA1WlHdRdUDGhLKE846xH2QE1vg7BQ6EaX-603ytK1Jc61atTgzo1qOtTV8OBLt-B_c38uOqB2QH4Ttedd_2__1Z-Ami1e6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013514943</pqid></control><display><type>article</type><title>Predicting the Band Gaps of Inorganic Solids by Machine Learning</title><source>ACS Publications</source><creator>Zhuo, Ya ; Mansouri Tehrani, Aria ; Brgoch, Jakoah</creator><creatorcontrib>Zhuo, Ya ; Mansouri Tehrani, Aria ; Brgoch, Jakoah</creatorcontrib><description>A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.8b00124</identifier><identifier>PMID: 29532658</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2018-04, Vol.9 (7), p.1668-1673</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-8e0767b701c61da7c4317430a0be6e5f7465ec050a6c66dd441bb70d329c4e7b3</citedby><cites>FETCH-LOGICAL-a411t-8e0767b701c61da7c4317430a0be6e5f7465ec050a6c66dd441bb70d329c4e7b3</cites><orcidid>0000-0003-1968-0379 ; 0000-0002-1406-1352 ; 0000-0003-2554-498X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.8b00124$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.8b00124$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29532658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo, Ya</creatorcontrib><creatorcontrib>Mansouri Tehrani, Aria</creatorcontrib><creatorcontrib>Brgoch, Jakoah</creatorcontrib><title>Predicting the Band Gaps of Inorganic Solids by Machine Learning</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EoqXwBEjII0taO3bsZAMqKJWKQAJmy7EvbarUCXYy9O0JNCAmprvh-__TfQhdUjKlJKYzbcJ025gK2naa5oTQmB-hMc14GkmaJsd_9hE6C2FLiMhIKk_RKM4SFoskHaObFw-2NG3p1rjdAL7TzuKFbgKuC7x0tV9rVxr8WlelDTjf4ydtNqUDvALtXZ86RyeFrgJcDHOC3h_u3-aP0ep5sZzfriLNKW2jFIgUMpeEGkGtloYzKjkjmuQgICkkFwkYkhAtjBDWck7znrYszgwHmbMJuj70Nr7-6CC0alcGA1WlHdRdUDGhLKE846xH2QE1vg7BQ6EaX-603ytK1Jc61atTgzo1qOtTV8OBLt-B_c38uOqB2QH4Ttedd_2__1Z-Ami1e6A</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Zhuo, Ya</creator><creator>Mansouri Tehrani, Aria</creator><creator>Brgoch, Jakoah</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1968-0379</orcidid><orcidid>https://orcid.org/0000-0002-1406-1352</orcidid><orcidid>https://orcid.org/0000-0003-2554-498X</orcidid></search><sort><creationdate>20180405</creationdate><title>Predicting the Band Gaps of Inorganic Solids by Machine Learning</title><author>Zhuo, Ya ; Mansouri Tehrani, Aria ; Brgoch, Jakoah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-8e0767b701c61da7c4317430a0be6e5f7465ec050a6c66dd441bb70d329c4e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Ya</creatorcontrib><creatorcontrib>Mansouri Tehrani, Aria</creatorcontrib><creatorcontrib>Brgoch, Jakoah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuo, Ya</au><au>Mansouri Tehrani, Aria</au><au>Brgoch, Jakoah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Band Gaps of Inorganic Solids by Machine Learning</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>9</volume><issue>7</issue><spage>1668</spage><epage>1673</epage><pages>1668-1673</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29532658</pmid><doi>10.1021/acs.jpclett.8b00124</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1968-0379</orcidid><orcidid>https://orcid.org/0000-0002-1406-1352</orcidid><orcidid>https://orcid.org/0000-0003-2554-498X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2018-04, Vol.9 (7), p.1668-1673
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2013514943
source ACS Publications
title Predicting the Band Gaps of Inorganic Solids by Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Band%20Gaps%20of%20Inorganic%20Solids%20by%20Machine%20Learning&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Zhuo,%20Ya&rft.date=2018-04-05&rft.volume=9&rft.issue=7&rft.spage=1668&rft.epage=1673&rft.pages=1668-1673&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.8b00124&rft_dat=%3Cproquest_cross%3E2013514943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013514943&rft_id=info:pmid/29532658&rfr_iscdi=true