Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy

The aim of this study was to analyze the effectiveness of UV-C light (0–10.6 kJ/m2) assisted by mild heat treatment (50 °C) on the inactivation of Saccharomyces cerevisiae KE 162 in peptone water and fresh carrot-orange juice blend (pH: 3.8; 9.8°Brix; 707 NTU; absorption coefficient: 0.17 cm−1). Yea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food microbiology 2018-08, Vol.73, p.1-10
Hauptverfasser: García Carrillo, Mercedes, Ferrario, Mariana, Guerrero, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to analyze the effectiveness of UV-C light (0–10.6 kJ/m2) assisted by mild heat treatment (50 °C) on the inactivation of Saccharomyces cerevisiae KE 162 in peptone water and fresh carrot-orange juice blend (pH: 3.8; 9.8°Brix; 707 NTU; absorption coefficient: 0.17 cm−1). Yeast induced damage by single UV-C and mild heat (H) and the combined treatment UV-C/H, was investigated by flow cytometry (FC) and transmission electron microscopy (TEM). When studying induced damage by FC, cells were labeled with fluorescein diacetate (FDA) and propidium iodide (PI) to monitor membrane integrity and esterase activity. UV-C/H provoked up to 4.7 log-reductions of S. cerevisiae; whereas, only 2.6–3.3 log-reductions were achieved by single UV-C and H treatments. FC revealed a shift with treatment time from cells with esterase activity and intact membrane to cells with permeabilized membrane. This shift was more noticeable in peptone water and UV-C/H treated juice. In the UV-C treated juice, double stained cells were detected, suggesting the possibility of being sub-lethally damaged, with compromised membrane but still metabolically active. TEM images of treated cells revealed severe damage, encompassing coagulated inner content, disorganized lumen and cell debris. FC and TEM provided additional information regarding degree and type of damage, complementing information revealed by the traditional plate count technique. •Yeast inactivation in a juice blend treated with UV-C at mild heat was studied.•Damage was investigated by flow cytometry and transmission electron microscopy.•Single or assisted UV-C caused membrane damage and loss of esterase activity.•FC revealed that UV-C/H caused more cell damage than single treatments in juice.•TEM images of UV-C/H treated yeasts cells revealed severe damage.
ISSN:0740-0020
1095-9998
DOI:10.1016/j.fm.2017.12.012