The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy
High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizin...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-07, Vol.24 (41), p.10271-10279 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10279 |
---|---|
container_issue | 41 |
container_start_page | 10271 |
container_title | Chemistry : a European journal |
container_volume | 24 |
creator | Schürmann, Robin Vogel, Stefanie Ebel, Kenny Bald, Ilko |
description | High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented. |
doi_str_mv | 10.1002/chem.201800804 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012919096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012919096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</originalsourceid><addsrcrecordid>eNqFkMtOGzEUQK2qqITAliWyxKabCdfvcXd0oIBEC0KwHnkcj2I0Mw52IpSu-gl8Y78EhwCV2HRlXevco6uD0D6BCQGgR3bm-gkFUgKUwD-hERGUFExJ8RmNQHNVSMH0NtpJ6R4AtGTsC9qmWlBKOR8hcztz-Hq2St6Gv3-eqqzz1nT4u0k-4dDik1_H-MZMfUhuSH7hf5uFD8M3fNHPu0yuh4TbEHFlBuviC_vyi7M5mvlqF221pktu7_Udo7sfp7fVeXF5dXZRHV8WlivJCz11jXG85VIZ6RrVCCupoSU0wkylEkqZktBWgqQMSqu5hpawBkQrhCAlY2P0deOdx_CwdGlR9z5Z13VmcGGZ6hyJaqLXCcbo8AN6H5ZxyNdlSjHKCcnGMZpsKBtDStG19Tz63sRVTaBex6_X8ev3-Hnh4FW7bHo3fcffamdAb4BH37nVf3R1dX7685_8GeB9kCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073241118</pqid></control><display><type>article</type><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</creator><creatorcontrib>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</creatorcontrib><description>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201800804</identifier><identifier>PMID: 29522244</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - therapeutic use ; Cancer ; Chemistry ; Cisplatin ; Cisplatin - chemistry ; Cisplatin - therapeutic use ; Deoxyribonucleic acid ; dissociative electron attachment ; DNA ; DNA - metabolism ; DNA - radiation effects ; DNA Damage ; Electrons ; Energy ; Experimental methods ; Humans ; low-energy electrons ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - therapeutic use ; Nanoparticles ; Neoplasms - radiotherapy ; Nucleosides - chemistry ; Nucleosides - therapeutic use ; Organic chemistry ; Radiation ; Radiation therapy ; Radiation-Sensitizing Agents - chemistry ; Radiation-Sensitizing Agents - therapeutic use ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - therapeutic use ; Radiosensitization ; Radiosensitizers</subject><ispartof>Chemistry : a European journal, 2018-07, Vol.24 (41), p.10271-10279</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</citedby><cites>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</cites><orcidid>0000-0002-6683-5065 ; 0000-0003-4957-5238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201800804$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201800804$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29522244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schürmann, Robin</creatorcontrib><creatorcontrib>Vogel, Stefanie</creatorcontrib><creatorcontrib>Ebel, Kenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Cisplatin</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - therapeutic use</subject><subject>Deoxyribonucleic acid</subject><subject>dissociative electron attachment</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA - radiation effects</subject><subject>DNA Damage</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experimental methods</subject><subject>Humans</subject><subject>low-energy electrons</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Nanoparticles</subject><subject>Neoplasms - radiotherapy</subject><subject>Nucleosides - chemistry</subject><subject>Nucleosides - therapeutic use</subject><subject>Organic chemistry</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>Radiation-Sensitizing Agents - chemistry</subject><subject>Radiation-Sensitizing Agents - therapeutic use</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiosensitization</subject><subject>Radiosensitizers</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOGzEUQK2qqITAliWyxKabCdfvcXd0oIBEC0KwHnkcj2I0Mw52IpSu-gl8Y78EhwCV2HRlXevco6uD0D6BCQGgR3bm-gkFUgKUwD-hERGUFExJ8RmNQHNVSMH0NtpJ6R4AtGTsC9qmWlBKOR8hcztz-Hq2St6Gv3-eqqzz1nT4u0k-4dDik1_H-MZMfUhuSH7hf5uFD8M3fNHPu0yuh4TbEHFlBuviC_vyi7M5mvlqF221pktu7_Udo7sfp7fVeXF5dXZRHV8WlivJCz11jXG85VIZ6RrVCCupoSU0wkylEkqZktBWgqQMSqu5hpawBkQrhCAlY2P0deOdx_CwdGlR9z5Z13VmcGGZ6hyJaqLXCcbo8AN6H5ZxyNdlSjHKCcnGMZpsKBtDStG19Tz63sRVTaBex6_X8ev3-Hnh4FW7bHo3fcffamdAb4BH37nVf3R1dX7685_8GeB9kCI</recordid><startdate>20180720</startdate><enddate>20180720</enddate><creator>Schürmann, Robin</creator><creator>Vogel, Stefanie</creator><creator>Ebel, Kenny</creator><creator>Bald, Ilko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid><orcidid>https://orcid.org/0000-0003-4957-5238</orcidid></search><sort><creationdate>20180720</creationdate><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><author>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Cisplatin</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - therapeutic use</topic><topic>Deoxyribonucleic acid</topic><topic>dissociative electron attachment</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA - radiation effects</topic><topic>DNA Damage</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experimental methods</topic><topic>Humans</topic><topic>low-energy electrons</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Nanoparticles</topic><topic>Neoplasms - radiotherapy</topic><topic>Nucleosides - chemistry</topic><topic>Nucleosides - therapeutic use</topic><topic>Organic chemistry</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>Radiation-Sensitizing Agents - chemistry</topic><topic>Radiation-Sensitizing Agents - therapeutic use</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiosensitization</topic><topic>Radiosensitizers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schürmann, Robin</creatorcontrib><creatorcontrib>Vogel, Stefanie</creatorcontrib><creatorcontrib>Ebel, Kenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schürmann, Robin</au><au>Vogel, Stefanie</au><au>Ebel, Kenny</au><au>Bald, Ilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-07-20</date><risdate>2018</risdate><volume>24</volume><issue>41</issue><spage>10271</spage><epage>10279</epage><pages>10271-10279</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.
The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29522244</pmid><doi>10.1002/chem.201800804</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid><orcidid>https://orcid.org/0000-0003-4957-5238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2018-07, Vol.24 (41), p.10271-10279 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2012919096 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antineoplastic Agents - chemistry Antineoplastic Agents - therapeutic use Cancer Chemistry Cisplatin Cisplatin - chemistry Cisplatin - therapeutic use Deoxyribonucleic acid dissociative electron attachment DNA DNA - metabolism DNA - radiation effects DNA Damage Electrons Energy Experimental methods Humans low-energy electrons Metal Nanoparticles - chemistry Metal Nanoparticles - therapeutic use Nanoparticles Neoplasms - radiotherapy Nucleosides - chemistry Nucleosides - therapeutic use Organic chemistry Radiation Radiation therapy Radiation-Sensitizing Agents - chemistry Radiation-Sensitizing Agents - therapeutic use Radiopharmaceuticals - chemistry Radiopharmaceuticals - therapeutic use Radiosensitization Radiosensitizers |
title | The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Physico%E2%80%90Chemical%20Basis%20of%20DNA%20Radiosensitization:%20Implications%20for%20Cancer%20Radiation%20Therapy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Sch%C3%BCrmann,%20Robin&rft.date=2018-07-20&rft.volume=24&rft.issue=41&rft.spage=10271&rft.epage=10279&rft.pages=10271-10279&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201800804&rft_dat=%3Cproquest_cross%3E2012919096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073241118&rft_id=info:pmid/29522244&rfr_iscdi=true |