The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy

High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-07, Vol.24 (41), p.10271-10279
Hauptverfasser: Schürmann, Robin, Vogel, Stefanie, Ebel, Kenny, Bald, Ilko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10279
container_issue 41
container_start_page 10271
container_title Chemistry : a European journal
container_volume 24
creator Schürmann, Robin
Vogel, Stefanie
Ebel, Kenny
Bald, Ilko
description High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.
doi_str_mv 10.1002/chem.201800804
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012919096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012919096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</originalsourceid><addsrcrecordid>eNqFkMtOGzEUQK2qqITAliWyxKabCdfvcXd0oIBEC0KwHnkcj2I0Mw52IpSu-gl8Y78EhwCV2HRlXevco6uD0D6BCQGgR3bm-gkFUgKUwD-hERGUFExJ8RmNQHNVSMH0NtpJ6R4AtGTsC9qmWlBKOR8hcztz-Hq2St6Gv3-eqqzz1nT4u0k-4dDik1_H-MZMfUhuSH7hf5uFD8M3fNHPu0yuh4TbEHFlBuviC_vyi7M5mvlqF221pktu7_Udo7sfp7fVeXF5dXZRHV8WlivJCz11jXG85VIZ6RrVCCupoSU0wkylEkqZktBWgqQMSqu5hpawBkQrhCAlY2P0deOdx_CwdGlR9z5Z13VmcGGZ6hyJaqLXCcbo8AN6H5ZxyNdlSjHKCcnGMZpsKBtDStG19Tz63sRVTaBex6_X8ev3-Hnh4FW7bHo3fcffamdAb4BH37nVf3R1dX7685_8GeB9kCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073241118</pqid></control><display><type>article</type><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</creator><creatorcontrib>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</creatorcontrib><description>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201800804</identifier><identifier>PMID: 29522244</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - therapeutic use ; Cancer ; Chemistry ; Cisplatin ; Cisplatin - chemistry ; Cisplatin - therapeutic use ; Deoxyribonucleic acid ; dissociative electron attachment ; DNA ; DNA - metabolism ; DNA - radiation effects ; DNA Damage ; Electrons ; Energy ; Experimental methods ; Humans ; low-energy electrons ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - therapeutic use ; Nanoparticles ; Neoplasms - radiotherapy ; Nucleosides - chemistry ; Nucleosides - therapeutic use ; Organic chemistry ; Radiation ; Radiation therapy ; Radiation-Sensitizing Agents - chemistry ; Radiation-Sensitizing Agents - therapeutic use ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - therapeutic use ; Radiosensitization ; Radiosensitizers</subject><ispartof>Chemistry : a European journal, 2018-07, Vol.24 (41), p.10271-10279</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</citedby><cites>FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</cites><orcidid>0000-0002-6683-5065 ; 0000-0003-4957-5238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201800804$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201800804$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29522244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schürmann, Robin</creatorcontrib><creatorcontrib>Vogel, Stefanie</creatorcontrib><creatorcontrib>Ebel, Kenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Cisplatin</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - therapeutic use</subject><subject>Deoxyribonucleic acid</subject><subject>dissociative electron attachment</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA - radiation effects</subject><subject>DNA Damage</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experimental methods</subject><subject>Humans</subject><subject>low-energy electrons</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Nanoparticles</subject><subject>Neoplasms - radiotherapy</subject><subject>Nucleosides - chemistry</subject><subject>Nucleosides - therapeutic use</subject><subject>Organic chemistry</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>Radiation-Sensitizing Agents - chemistry</subject><subject>Radiation-Sensitizing Agents - therapeutic use</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - therapeutic use</subject><subject>Radiosensitization</subject><subject>Radiosensitizers</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOGzEUQK2qqITAliWyxKabCdfvcXd0oIBEC0KwHnkcj2I0Mw52IpSu-gl8Y78EhwCV2HRlXevco6uD0D6BCQGgR3bm-gkFUgKUwD-hERGUFExJ8RmNQHNVSMH0NtpJ6R4AtGTsC9qmWlBKOR8hcztz-Hq2St6Gv3-eqqzz1nT4u0k-4dDik1_H-MZMfUhuSH7hf5uFD8M3fNHPu0yuh4TbEHFlBuviC_vyi7M5mvlqF221pktu7_Udo7sfp7fVeXF5dXZRHV8WlivJCz11jXG85VIZ6RrVCCupoSU0wkylEkqZktBWgqQMSqu5hpawBkQrhCAlY2P0deOdx_CwdGlR9z5Z13VmcGGZ6hyJaqLXCcbo8AN6H5ZxyNdlSjHKCcnGMZpsKBtDStG19Tz63sRVTaBex6_X8ev3-Hnh4FW7bHo3fcffamdAb4BH37nVf3R1dX7685_8GeB9kCI</recordid><startdate>20180720</startdate><enddate>20180720</enddate><creator>Schürmann, Robin</creator><creator>Vogel, Stefanie</creator><creator>Ebel, Kenny</creator><creator>Bald, Ilko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid><orcidid>https://orcid.org/0000-0003-4957-5238</orcidid></search><sort><creationdate>20180720</creationdate><title>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</title><author>Schürmann, Robin ; Vogel, Stefanie ; Ebel, Kenny ; Bald, Ilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-9debae4f467a6eb7b5c62a280b5ad67577a812f6062308c9490f13b05f5551833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Cisplatin</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - therapeutic use</topic><topic>Deoxyribonucleic acid</topic><topic>dissociative electron attachment</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA - radiation effects</topic><topic>DNA Damage</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experimental methods</topic><topic>Humans</topic><topic>low-energy electrons</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Nanoparticles</topic><topic>Neoplasms - radiotherapy</topic><topic>Nucleosides - chemistry</topic><topic>Nucleosides - therapeutic use</topic><topic>Organic chemistry</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>Radiation-Sensitizing Agents - chemistry</topic><topic>Radiation-Sensitizing Agents - therapeutic use</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - therapeutic use</topic><topic>Radiosensitization</topic><topic>Radiosensitizers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schürmann, Robin</creatorcontrib><creatorcontrib>Vogel, Stefanie</creatorcontrib><creatorcontrib>Ebel, Kenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schürmann, Robin</au><au>Vogel, Stefanie</au><au>Ebel, Kenny</au><au>Bald, Ilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-07-20</date><risdate>2018</risdate><volume>24</volume><issue>41</issue><spage>10271</spage><epage>10279</epage><pages>10271-10279</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>High‐energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low‐energy electrons generated along the radiation track of the high‐energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico‐chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico‐chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. The concept of physico‐chemical radiosensitization is based the enhanced reactivity of DNA towards secondary low‐energy electrons, or the increase of local concentration of such electrons. This can for example be achieved by incorporation of halogenated nucleosides into DNA, or by administration of metal nanoparticles. Fundamental mechanisms of low‐energy electron‐induced DNA damage are discussed and recent experimental advancements in the quantification of DNA strand breaks in chemically modified DNA are presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29522244</pmid><doi>10.1002/chem.201800804</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid><orcidid>https://orcid.org/0000-0003-4957-5238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-07, Vol.24 (41), p.10271-10279
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2012919096
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antineoplastic Agents - chemistry
Antineoplastic Agents - therapeutic use
Cancer
Chemistry
Cisplatin
Cisplatin - chemistry
Cisplatin - therapeutic use
Deoxyribonucleic acid
dissociative electron attachment
DNA
DNA - metabolism
DNA - radiation effects
DNA Damage
Electrons
Energy
Experimental methods
Humans
low-energy electrons
Metal Nanoparticles - chemistry
Metal Nanoparticles - therapeutic use
Nanoparticles
Neoplasms - radiotherapy
Nucleosides - chemistry
Nucleosides - therapeutic use
Organic chemistry
Radiation
Radiation therapy
Radiation-Sensitizing Agents - chemistry
Radiation-Sensitizing Agents - therapeutic use
Radiopharmaceuticals - chemistry
Radiopharmaceuticals - therapeutic use
Radiosensitization
Radiosensitizers
title The Physico‐Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Physico%E2%80%90Chemical%20Basis%20of%20DNA%20Radiosensitization:%20Implications%20for%20Cancer%20Radiation%20Therapy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Sch%C3%BCrmann,%20Robin&rft.date=2018-07-20&rft.volume=24&rft.issue=41&rft.spage=10271&rft.epage=10279&rft.pages=10271-10279&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201800804&rft_dat=%3Cproquest_cross%3E2012919096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073241118&rft_id=info:pmid/29522244&rfr_iscdi=true