Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae

Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2018-08, Vol.27 (4), p.429-438
Hauptverfasser: Sigle, L. T., Hillyer, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 4
container_start_page 429
container_title Insect molecular biology
container_volume 27
creator Sigle, L. T.
Hillyer, J. F.
description Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.
doi_str_mv 10.1111/imb.12383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012912926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012912926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</originalsourceid><addsrcrecordid>eNp10ctOxCAUBmBiNDpeFr6AIXGjizoUSgtLNd4SjRv3DVMODlpKhXbMvL2M47gwkZBwQr78OXAQOs7JRZ7W1LrZRU6ZYFtokrOSZ5QLto0mRJY0y0nF99B-jG-EECFLuYv2qOR0VU_Q-40aIGDVaayD6ldlAGy7hW8XoFOBhzngdG99HKxq8VyB881ySMi5sQMcIPa-i7CxzseP0Q4eX3a-n0MLEb8qN7MKDtGOUW2Eo5_zAL3c3rxc32ePz3cP15ePWcM4Y5kgpmGaK2F4UamqUVoJIRjXojJleiYplaSmMbKi1BQccklnRgttwBRFVbEDdLaO7YP_GCEOtbOxgbZVHfgx1pTkVKZNy0RP_9A3P4YuNZdUVZa8kJwkdb5WTfAxBjB1H6xTYVnnpF4NoE4DqL8HkOzJT-I4c6B_5ebHE5iuwadtYfl_Uv3wdLWO_ALr6o_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076654950</pqid></control><display><type>article</type><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sigle, L. T. ; Hillyer, J. F.</creator><creatorcontrib>Sigle, L. T. ; Hillyer, J. F.</creatorcontrib><description>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/imb.12383</identifier><identifier>PMID: 29520896</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Animals ; Anopheles - immunology ; Anopheles - microbiology ; Anopheles gambiae ; Aquatic insects ; Culicidae ; Diptera ; dorsal vessel ; Draper protein ; E coli ; Escherichia coli - physiology ; Female ; Fruit flies ; Functional integration ; Gene expression ; granulocyte ; haemocyte ; haemolymph ; heart ; Hemocytes ; Hemocytes - immunology ; Hemocytes - microbiology ; Hemolymph ; Immune response ; Immune system ; immunity ; Immunity, Innate - genetics ; infection ; Infections ; insect ; Insect Proteins - genetics ; Insect Proteins - immunology ; Malaria ; Melanin ; Melanization ; Microscopy ; Mosquitoes ; Pathogens ; Phagocytosis ; Phenoloxidase ; Proteins ; Ribonucleic acid ; RNA ; RNA-mediated interference ; Vector-borne diseases</subject><ispartof>Insect molecular biology, 2018-08, Vol.27 (4), p.429-438</ispartof><rights>2018 The Royal Entomological Society</rights><rights>2018 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</citedby><cites>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</cites><orcidid>0000-0002-3178-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fimb.12383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fimb.12383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29520896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigle, L. T.</creatorcontrib><creatorcontrib>Hillyer, J. F.</creatorcontrib><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</description><subject>Accumulation</subject><subject>Animals</subject><subject>Anopheles - immunology</subject><subject>Anopheles - microbiology</subject><subject>Anopheles gambiae</subject><subject>Aquatic insects</subject><subject>Culicidae</subject><subject>Diptera</subject><subject>dorsal vessel</subject><subject>Draper protein</subject><subject>E coli</subject><subject>Escherichia coli - physiology</subject><subject>Female</subject><subject>Fruit flies</subject><subject>Functional integration</subject><subject>Gene expression</subject><subject>granulocyte</subject><subject>haemocyte</subject><subject>haemolymph</subject><subject>heart</subject><subject>Hemocytes</subject><subject>Hemocytes - immunology</subject><subject>Hemocytes - microbiology</subject><subject>Hemolymph</subject><subject>Immune response</subject><subject>Immune system</subject><subject>immunity</subject><subject>Immunity, Innate - genetics</subject><subject>infection</subject><subject>Infections</subject><subject>insect</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - immunology</subject><subject>Malaria</subject><subject>Melanin</subject><subject>Melanization</subject><subject>Microscopy</subject><subject>Mosquitoes</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Phenoloxidase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-mediated interference</subject><subject>Vector-borne diseases</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctOxCAUBmBiNDpeFr6AIXGjizoUSgtLNd4SjRv3DVMODlpKhXbMvL2M47gwkZBwQr78OXAQOs7JRZ7W1LrZRU6ZYFtokrOSZ5QLto0mRJY0y0nF99B-jG-EECFLuYv2qOR0VU_Q-40aIGDVaayD6ldlAGy7hW8XoFOBhzngdG99HKxq8VyB881ySMi5sQMcIPa-i7CxzseP0Q4eX3a-n0MLEb8qN7MKDtGOUW2Eo5_zAL3c3rxc32ePz3cP15ePWcM4Y5kgpmGaK2F4UamqUVoJIRjXojJleiYplaSmMbKi1BQccklnRgttwBRFVbEDdLaO7YP_GCEOtbOxgbZVHfgx1pTkVKZNy0RP_9A3P4YuNZdUVZa8kJwkdb5WTfAxBjB1H6xTYVnnpF4NoE4DqL8HkOzJT-I4c6B_5ebHE5iuwadtYfl_Uv3wdLWO_ALr6o_r</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Sigle, L. T.</creator><creator>Hillyer, J. F.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3178-0201</orcidid></search><sort><creationdate>201808</creationdate><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><author>Sigle, L. T. ; Hillyer, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Animals</topic><topic>Anopheles - immunology</topic><topic>Anopheles - microbiology</topic><topic>Anopheles gambiae</topic><topic>Aquatic insects</topic><topic>Culicidae</topic><topic>Diptera</topic><topic>dorsal vessel</topic><topic>Draper protein</topic><topic>E coli</topic><topic>Escherichia coli - physiology</topic><topic>Female</topic><topic>Fruit flies</topic><topic>Functional integration</topic><topic>Gene expression</topic><topic>granulocyte</topic><topic>haemocyte</topic><topic>haemolymph</topic><topic>heart</topic><topic>Hemocytes</topic><topic>Hemocytes - immunology</topic><topic>Hemocytes - microbiology</topic><topic>Hemolymph</topic><topic>Immune response</topic><topic>Immune system</topic><topic>immunity</topic><topic>Immunity, Innate - genetics</topic><topic>infection</topic><topic>Infections</topic><topic>insect</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - immunology</topic><topic>Malaria</topic><topic>Melanin</topic><topic>Melanization</topic><topic>Microscopy</topic><topic>Mosquitoes</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Phenoloxidase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-mediated interference</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigle, L. T.</creatorcontrib><creatorcontrib>Hillyer, J. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigle, L. T.</au><au>Hillyer, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>429</spage><epage>438</epage><pages>429-438</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29520896</pmid><doi>10.1111/imb.12383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3178-0201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-1075
ispartof Insect molecular biology, 2018-08, Vol.27 (4), p.429-438
issn 0962-1075
1365-2583
language eng
recordid cdi_proquest_miscellaneous_2012912926
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accumulation
Animals
Anopheles - immunology
Anopheles - microbiology
Anopheles gambiae
Aquatic insects
Culicidae
Diptera
dorsal vessel
Draper protein
E coli
Escherichia coli - physiology
Female
Fruit flies
Functional integration
Gene expression
granulocyte
haemocyte
haemolymph
heart
Hemocytes
Hemocytes - immunology
Hemocytes - microbiology
Hemolymph
Immune response
Immune system
immunity
Immunity, Innate - genetics
infection
Infections
insect
Insect Proteins - genetics
Insect Proteins - immunology
Malaria
Melanin
Melanization
Microscopy
Mosquitoes
Pathogens
Phagocytosis
Phenoloxidase
Proteins
Ribonucleic acid
RNA
RNA-mediated interference
Vector-borne diseases
title Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eater%20and%20draper%20are%20involved%20in%20the%20periostial%20haemocyte%20immune%20response%20in%20the%20mosquito%20Anopheles%20gambiae&rft.jtitle=Insect%20molecular%20biology&rft.au=Sigle,%20L.%20T.&rft.date=2018-08&rft.volume=27&rft.issue=4&rft.spage=429&rft.epage=438&rft.pages=429-438&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/imb.12383&rft_dat=%3Cproquest_cross%3E2012912926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076654950&rft_id=info:pmid/29520896&rfr_iscdi=true