Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae
Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mos...
Gespeichert in:
Veröffentlicht in: | Insect molecular biology 2018-08, Vol.27 (4), p.429-438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 4 |
container_start_page | 429 |
container_title | Insect molecular biology |
container_volume | 27 |
creator | Sigle, L. T. Hillyer, J. F. |
description | Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems. |
doi_str_mv | 10.1111/imb.12383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012912926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012912926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</originalsourceid><addsrcrecordid>eNp10ctOxCAUBmBiNDpeFr6AIXGjizoUSgtLNd4SjRv3DVMODlpKhXbMvL2M47gwkZBwQr78OXAQOs7JRZ7W1LrZRU6ZYFtokrOSZ5QLto0mRJY0y0nF99B-jG-EECFLuYv2qOR0VU_Q-40aIGDVaayD6ldlAGy7hW8XoFOBhzngdG99HKxq8VyB881ySMi5sQMcIPa-i7CxzseP0Q4eX3a-n0MLEb8qN7MKDtGOUW2Eo5_zAL3c3rxc32ePz3cP15ePWcM4Y5kgpmGaK2F4UamqUVoJIRjXojJleiYplaSmMbKi1BQccklnRgttwBRFVbEDdLaO7YP_GCEOtbOxgbZVHfgx1pTkVKZNy0RP_9A3P4YuNZdUVZa8kJwkdb5WTfAxBjB1H6xTYVnnpF4NoE4DqL8HkOzJT-I4c6B_5ebHE5iuwadtYfl_Uv3wdLWO_ALr6o_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076654950</pqid></control><display><type>article</type><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sigle, L. T. ; Hillyer, J. F.</creator><creatorcontrib>Sigle, L. T. ; Hillyer, J. F.</creatorcontrib><description>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1111/imb.12383</identifier><identifier>PMID: 29520896</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Animals ; Anopheles - immunology ; Anopheles - microbiology ; Anopheles gambiae ; Aquatic insects ; Culicidae ; Diptera ; dorsal vessel ; Draper protein ; E coli ; Escherichia coli - physiology ; Female ; Fruit flies ; Functional integration ; Gene expression ; granulocyte ; haemocyte ; haemolymph ; heart ; Hemocytes ; Hemocytes - immunology ; Hemocytes - microbiology ; Hemolymph ; Immune response ; Immune system ; immunity ; Immunity, Innate - genetics ; infection ; Infections ; insect ; Insect Proteins - genetics ; Insect Proteins - immunology ; Malaria ; Melanin ; Melanization ; Microscopy ; Mosquitoes ; Pathogens ; Phagocytosis ; Phenoloxidase ; Proteins ; Ribonucleic acid ; RNA ; RNA-mediated interference ; Vector-borne diseases</subject><ispartof>Insect molecular biology, 2018-08, Vol.27 (4), p.429-438</ispartof><rights>2018 The Royal Entomological Society</rights><rights>2018 The Royal Entomological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</citedby><cites>FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</cites><orcidid>0000-0002-3178-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fimb.12383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fimb.12383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29520896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigle, L. T.</creatorcontrib><creatorcontrib>Hillyer, J. F.</creatorcontrib><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</description><subject>Accumulation</subject><subject>Animals</subject><subject>Anopheles - immunology</subject><subject>Anopheles - microbiology</subject><subject>Anopheles gambiae</subject><subject>Aquatic insects</subject><subject>Culicidae</subject><subject>Diptera</subject><subject>dorsal vessel</subject><subject>Draper protein</subject><subject>E coli</subject><subject>Escherichia coli - physiology</subject><subject>Female</subject><subject>Fruit flies</subject><subject>Functional integration</subject><subject>Gene expression</subject><subject>granulocyte</subject><subject>haemocyte</subject><subject>haemolymph</subject><subject>heart</subject><subject>Hemocytes</subject><subject>Hemocytes - immunology</subject><subject>Hemocytes - microbiology</subject><subject>Hemolymph</subject><subject>Immune response</subject><subject>Immune system</subject><subject>immunity</subject><subject>Immunity, Innate - genetics</subject><subject>infection</subject><subject>Infections</subject><subject>insect</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - immunology</subject><subject>Malaria</subject><subject>Melanin</subject><subject>Melanization</subject><subject>Microscopy</subject><subject>Mosquitoes</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Phenoloxidase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-mediated interference</subject><subject>Vector-borne diseases</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctOxCAUBmBiNDpeFr6AIXGjizoUSgtLNd4SjRv3DVMODlpKhXbMvL2M47gwkZBwQr78OXAQOs7JRZ7W1LrZRU6ZYFtokrOSZ5QLto0mRJY0y0nF99B-jG-EECFLuYv2qOR0VU_Q-40aIGDVaayD6ldlAGy7hW8XoFOBhzngdG99HKxq8VyB881ySMi5sQMcIPa-i7CxzseP0Q4eX3a-n0MLEb8qN7MKDtGOUW2Eo5_zAL3c3rxc32ePz3cP15ePWcM4Y5kgpmGaK2F4UamqUVoJIRjXojJleiYplaSmMbKi1BQccklnRgttwBRFVbEDdLaO7YP_GCEOtbOxgbZVHfgx1pTkVKZNy0RP_9A3P4YuNZdUVZa8kJwkdb5WTfAxBjB1H6xTYVnnpF4NoE4DqL8HkOzJT-I4c6B_5ebHE5iuwadtYfl_Uv3wdLWO_ALr6o_r</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Sigle, L. T.</creator><creator>Hillyer, J. F.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3178-0201</orcidid></search><sort><creationdate>201808</creationdate><title>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</title><author>Sigle, L. T. ; Hillyer, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-80fc3d5a8f547a7cada88835d87f612306a92fcf9722f45e192bfd8dfef44773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Animals</topic><topic>Anopheles - immunology</topic><topic>Anopheles - microbiology</topic><topic>Anopheles gambiae</topic><topic>Aquatic insects</topic><topic>Culicidae</topic><topic>Diptera</topic><topic>dorsal vessel</topic><topic>Draper protein</topic><topic>E coli</topic><topic>Escherichia coli - physiology</topic><topic>Female</topic><topic>Fruit flies</topic><topic>Functional integration</topic><topic>Gene expression</topic><topic>granulocyte</topic><topic>haemocyte</topic><topic>haemolymph</topic><topic>heart</topic><topic>Hemocytes</topic><topic>Hemocytes - immunology</topic><topic>Hemocytes - microbiology</topic><topic>Hemolymph</topic><topic>Immune response</topic><topic>Immune system</topic><topic>immunity</topic><topic>Immunity, Innate - genetics</topic><topic>infection</topic><topic>Infections</topic><topic>insect</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - immunology</topic><topic>Malaria</topic><topic>Melanin</topic><topic>Melanization</topic><topic>Microscopy</topic><topic>Mosquitoes</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Phenoloxidase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-mediated interference</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigle, L. T.</creatorcontrib><creatorcontrib>Hillyer, J. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigle, L. T.</au><au>Hillyer, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2018-08</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>429</spage><epage>438</epage><pages>429-438</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase‐based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod – the orthologue of Drosophila NimB2 – is not involved in periostial responses. At 4 h postinfection, however, RNAi‐based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29520896</pmid><doi>10.1111/imb.12383</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3178-0201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1075 |
ispartof | Insect molecular biology, 2018-08, Vol.27 (4), p.429-438 |
issn | 0962-1075 1365-2583 |
language | eng |
recordid | cdi_proquest_miscellaneous_2012912926 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation Animals Anopheles - immunology Anopheles - microbiology Anopheles gambiae Aquatic insects Culicidae Diptera dorsal vessel Draper protein E coli Escherichia coli - physiology Female Fruit flies Functional integration Gene expression granulocyte haemocyte haemolymph heart Hemocytes Hemocytes - immunology Hemocytes - microbiology Hemolymph Immune response Immune system immunity Immunity, Innate - genetics infection Infections insect Insect Proteins - genetics Insect Proteins - immunology Malaria Melanin Melanization Microscopy Mosquitoes Pathogens Phagocytosis Phenoloxidase Proteins Ribonucleic acid RNA RNA-mediated interference Vector-borne diseases |
title | Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eater%20and%20draper%20are%20involved%20in%20the%20periostial%20haemocyte%20immune%20response%20in%20the%20mosquito%20Anopheles%20gambiae&rft.jtitle=Insect%20molecular%20biology&rft.au=Sigle,%20L.%20T.&rft.date=2018-08&rft.volume=27&rft.issue=4&rft.spage=429&rft.epage=438&rft.pages=429-438&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1111/imb.12383&rft_dat=%3Cproquest_cross%3E2012912926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076654950&rft_id=info:pmid/29520896&rfr_iscdi=true |