Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells
Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of r...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2018-03, Vol.48 (3), p.542-555.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 555.e6 |
---|---|
container_issue | 3 |
container_start_page | 542 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 48 |
creator | Bantug, Glenn R. Fischer, Marco Grählert, Jasmin Balmer, Maria L. Unterstab, Gunhild Develioglu, Leyla Steiner, Rebekah Zhang, Lianjun Costa, Ana S.H. Gubser, Patrick M. Burgener, Anne-Valérie Sauder, Ursula Löliger, Jordan Belle, Réka Dimeloe, Sarah Lötscher, Jonas Jauch, Annaïse Recher, Mike Hönger, Gideon Hall, Michael N. Romero, Pedro Frezza, Christian Hess, Christoph |
description | Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
[Display omitted]
•mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells
How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses. |
doi_str_mv | 10.1016/j.immuni.2018.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012910786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761318300700</els_id><sourcerecordid>2012910786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</originalsourceid><addsrcrecordid>eNp9kUGL1TAUhYsozjj6D0QCbgRpTdK0L90IUmecgRkGxnEd0ptbXh5tUpNUmN_hHzb1jS5cSBY3hO_cHM4piteMVoyy9sOhsvO8OltxymRFeUUZf1KcMtrtSsEkfbrdd6Lctaw-KV7EeKCUiaajz4sT3jW8FoKeFj9vbPKw984Eq8tzZ_wy6ThbIHeYLKzTOpPeu6Qhka82YSQXq4NkvSM6kqvNgZ8x6cFPWXO5DpGkvU7kNsAeYwo6YX5AcqcXa_JO0NOUR1y8i0j8SG5w9uGB9J_le3JPepym-LJ4Nuop4qvHeVZ8uzi_7y_L69svV_2n6xJE3aaybqg2NcrOgGS1kZqClO1oOAUKoI0ZBlF3NR1bQ8XIcGyAN0PLUHDoGsHqs-Ldce8S_Pc1u1WzjZAdaId-jSoHy7ucoWwz-vYf9ODX4LK7jdrl0zKeKXGkIPgYA45qCXbW4UExqrbS1EEdS9tUUlGu6G_Zm8fl6zCj-Sv601IGPh4BzGn8sBhUBIsO0NiAkJTx9v8__AKcMatS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017171612</pqid></control><display><type>article</type><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</creator><creatorcontrib>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</creatorcontrib><description>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
[Display omitted]
•mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells
How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.02.012</identifier><identifier>PMID: 29523440</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Akt ; AKT protein ; Antigens ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell activation ; Cell Respiration ; Effector cells ; Electron transport ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Energy Metabolism ; Epigenetics ; Gene expression ; Glucose ; Glucose metabolism ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen Synthase Kinase 3 beta - metabolism ; Glycolysis ; GSK3-beta ; Hexokinase ; IFN-gamma ; Immunologic Memory ; Immunological memory ; Interferon ; Intracellular Membranes - metabolism ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Membranes ; memory CD8+ T cells ; Memory cells ; Metabolism ; Microscopy ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Models, Biological ; Morphology ; mTOR ; Oxidation ; Proto-Oncogene Proteins c-akt - metabolism ; Pyruvic acid ; Rapamycin ; Rapamycin-Insensitive Companion of mTOR Protein - deficiency ; Recall ; Respiration ; Signal Transduction ; Structural members ; TOR protein ; VDAC ; γ-Interferon</subject><ispartof>Immunity (Cambridge, Mass.), 2018-03, Vol.48 (3), p.542-555.e6</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</citedby><cites>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761318300700$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29523440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bantug, Glenn R.</creatorcontrib><creatorcontrib>Fischer, Marco</creatorcontrib><creatorcontrib>Grählert, Jasmin</creatorcontrib><creatorcontrib>Balmer, Maria L.</creatorcontrib><creatorcontrib>Unterstab, Gunhild</creatorcontrib><creatorcontrib>Develioglu, Leyla</creatorcontrib><creatorcontrib>Steiner, Rebekah</creatorcontrib><creatorcontrib>Zhang, Lianjun</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Gubser, Patrick M.</creatorcontrib><creatorcontrib>Burgener, Anne-Valérie</creatorcontrib><creatorcontrib>Sauder, Ursula</creatorcontrib><creatorcontrib>Löliger, Jordan</creatorcontrib><creatorcontrib>Belle, Réka</creatorcontrib><creatorcontrib>Dimeloe, Sarah</creatorcontrib><creatorcontrib>Lötscher, Jonas</creatorcontrib><creatorcontrib>Jauch, Annaïse</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Hönger, Gideon</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><creatorcontrib>Romero, Pedro</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Hess, Christoph</creatorcontrib><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
[Display omitted]
•mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells
How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</description><subject>Akt</subject><subject>AKT protein</subject><subject>Antigens</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell activation</subject><subject>Cell Respiration</subject><subject>Effector cells</subject><subject>Electron transport</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Energy Metabolism</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Glycolysis</subject><subject>GSK3-beta</subject><subject>Hexokinase</subject><subject>IFN-gamma</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Interferon</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Membranes</subject><subject>memory CD8+ T cells</subject><subject>Memory cells</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>mTOR</subject><subject>Oxidation</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Pyruvic acid</subject><subject>Rapamycin</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein - deficiency</subject><subject>Recall</subject><subject>Respiration</subject><subject>Signal Transduction</subject><subject>Structural members</subject><subject>TOR protein</subject><subject>VDAC</subject><subject>γ-Interferon</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGL1TAUhYsozjj6D0QCbgRpTdK0L90IUmecgRkGxnEd0ptbXh5tUpNUmN_hHzb1jS5cSBY3hO_cHM4piteMVoyy9sOhsvO8OltxymRFeUUZf1KcMtrtSsEkfbrdd6Lctaw-KV7EeKCUiaajz4sT3jW8FoKeFj9vbPKw984Eq8tzZ_wy6ThbIHeYLKzTOpPeu6Qhka82YSQXq4NkvSM6kqvNgZ8x6cFPWXO5DpGkvU7kNsAeYwo6YX5AcqcXa_JO0NOUR1y8i0j8SG5w9uGB9J_le3JPepym-LJ4Nuop4qvHeVZ8uzi_7y_L69svV_2n6xJE3aaybqg2NcrOgGS1kZqClO1oOAUKoI0ZBlF3NR1bQ8XIcGyAN0PLUHDoGsHqs-Ldce8S_Pc1u1WzjZAdaId-jSoHy7ucoWwz-vYf9ODX4LK7jdrl0zKeKXGkIPgYA45qCXbW4UExqrbS1EEdS9tUUlGu6G_Zm8fl6zCj-Sv601IGPh4BzGn8sBhUBIsO0NiAkJTx9v8__AKcMatS</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Bantug, Glenn R.</creator><creator>Fischer, Marco</creator><creator>Grählert, Jasmin</creator><creator>Balmer, Maria L.</creator><creator>Unterstab, Gunhild</creator><creator>Develioglu, Leyla</creator><creator>Steiner, Rebekah</creator><creator>Zhang, Lianjun</creator><creator>Costa, Ana S.H.</creator><creator>Gubser, Patrick M.</creator><creator>Burgener, Anne-Valérie</creator><creator>Sauder, Ursula</creator><creator>Löliger, Jordan</creator><creator>Belle, Réka</creator><creator>Dimeloe, Sarah</creator><creator>Lötscher, Jonas</creator><creator>Jauch, Annaïse</creator><creator>Recher, Mike</creator><creator>Hönger, Gideon</creator><creator>Hall, Michael N.</creator><creator>Romero, Pedro</creator><creator>Frezza, Christian</creator><creator>Hess, Christoph</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180320</creationdate><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><author>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Akt</topic><topic>AKT protein</topic><topic>Antigens</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell activation</topic><topic>Cell Respiration</topic><topic>Effector cells</topic><topic>Electron transport</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Energy Metabolism</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Glycolysis</topic><topic>GSK3-beta</topic><topic>Hexokinase</topic><topic>IFN-gamma</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Interferon</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Membranes</topic><topic>memory CD8+ T cells</topic><topic>Memory cells</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>mTOR</topic><topic>Oxidation</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Pyruvic acid</topic><topic>Rapamycin</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein - deficiency</topic><topic>Recall</topic><topic>Respiration</topic><topic>Signal Transduction</topic><topic>Structural members</topic><topic>TOR protein</topic><topic>VDAC</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bantug, Glenn R.</creatorcontrib><creatorcontrib>Fischer, Marco</creatorcontrib><creatorcontrib>Grählert, Jasmin</creatorcontrib><creatorcontrib>Balmer, Maria L.</creatorcontrib><creatorcontrib>Unterstab, Gunhild</creatorcontrib><creatorcontrib>Develioglu, Leyla</creatorcontrib><creatorcontrib>Steiner, Rebekah</creatorcontrib><creatorcontrib>Zhang, Lianjun</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Gubser, Patrick M.</creatorcontrib><creatorcontrib>Burgener, Anne-Valérie</creatorcontrib><creatorcontrib>Sauder, Ursula</creatorcontrib><creatorcontrib>Löliger, Jordan</creatorcontrib><creatorcontrib>Belle, Réka</creatorcontrib><creatorcontrib>Dimeloe, Sarah</creatorcontrib><creatorcontrib>Lötscher, Jonas</creatorcontrib><creatorcontrib>Jauch, Annaïse</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Hönger, Gideon</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><creatorcontrib>Romero, Pedro</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Hess, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bantug, Glenn R.</au><au>Fischer, Marco</au><au>Grählert, Jasmin</au><au>Balmer, Maria L.</au><au>Unterstab, Gunhild</au><au>Develioglu, Leyla</au><au>Steiner, Rebekah</au><au>Zhang, Lianjun</au><au>Costa, Ana S.H.</au><au>Gubser, Patrick M.</au><au>Burgener, Anne-Valérie</au><au>Sauder, Ursula</au><au>Löliger, Jordan</au><au>Belle, Réka</au><au>Dimeloe, Sarah</au><au>Lötscher, Jonas</au><au>Jauch, Annaïse</au><au>Recher, Mike</au><au>Hönger, Gideon</au><au>Hall, Michael N.</au><au>Romero, Pedro</au><au>Frezza, Christian</au><au>Hess, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>48</volume><issue>3</issue><spage>542</spage><epage>555.e6</epage><pages>542-555.e6</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
[Display omitted]
•mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells
How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29523440</pmid><doi>10.1016/j.immuni.2018.02.012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2018-03, Vol.48 (3), p.542-555.e6 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_proquest_miscellaneous_2012910786 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Akt AKT protein Antigens CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell activation Cell Respiration Effector cells Electron transport Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - ultrastructure Energy Metabolism Epigenetics Gene expression Glucose Glucose metabolism Glycogen Glycogen synthase kinase 3 Glycogen Synthase Kinase 3 beta - metabolism Glycolysis GSK3-beta Hexokinase IFN-gamma Immunologic Memory Immunological memory Interferon Intracellular Membranes - metabolism Lymphocyte Activation Lymphocytes Lymphocytes T Mechanistic Target of Rapamycin Complex 2 - metabolism Membranes memory CD8+ T cells Memory cells Metabolism Microscopy Mitochondria Mitochondria - metabolism Mitochondria - ultrastructure Models, Biological Morphology mTOR Oxidation Proto-Oncogene Proteins c-akt - metabolism Pyruvic acid Rapamycin Rapamycin-Insensitive Companion of mTOR Protein - deficiency Recall Respiration Signal Transduction Structural members TOR protein VDAC γ-Interferon |
title | Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondria-Endoplasmic%20Reticulum%20Contact%20Sites%20Function%20as%20Immunometabolic%20Hubs%20that%20Orchestrate%20the%20Rapid%20Recall%20Response%20of%20Memory%20CD8+%20T%20Cells&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Bantug,%20Glenn%20R.&rft.date=2018-03-20&rft.volume=48&rft.issue=3&rft.spage=542&rft.epage=555.e6&rft.pages=542-555.e6&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.02.012&rft_dat=%3Cproquest_cross%3E2012910786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017171612&rft_id=info:pmid/29523440&rft_els_id=S1074761318300700&rfr_iscdi=true |