Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells

Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2018-03, Vol.48 (3), p.542-555.e6
Hauptverfasser: Bantug, Glenn R., Fischer, Marco, Grählert, Jasmin, Balmer, Maria L., Unterstab, Gunhild, Develioglu, Leyla, Steiner, Rebekah, Zhang, Lianjun, Costa, Ana S.H., Gubser, Patrick M., Burgener, Anne-Valérie, Sauder, Ursula, Löliger, Jordan, Belle, Réka, Dimeloe, Sarah, Lötscher, Jonas, Jauch, Annaïse, Recher, Mike, Hönger, Gideon, Hall, Michael N., Romero, Pedro, Frezza, Christian, Hess, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555.e6
container_issue 3
container_start_page 542
container_title Immunity (Cambridge, Mass.)
container_volume 48
creator Bantug, Glenn R.
Fischer, Marco
Grählert, Jasmin
Balmer, Maria L.
Unterstab, Gunhild
Develioglu, Leyla
Steiner, Rebekah
Zhang, Lianjun
Costa, Ana S.H.
Gubser, Patrick M.
Burgener, Anne-Valérie
Sauder, Ursula
Löliger, Jordan
Belle, Réka
Dimeloe, Sarah
Lötscher, Jonas
Jauch, Annaïse
Recher, Mike
Hönger, Gideon
Hall, Michael N.
Romero, Pedro
Frezza, Christian
Hess, Christoph
description Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function. [Display omitted] •mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.
doi_str_mv 10.1016/j.immuni.2018.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012910786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761318300700</els_id><sourcerecordid>2012910786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</originalsourceid><addsrcrecordid>eNp9kUGL1TAUhYsozjj6D0QCbgRpTdK0L90IUmecgRkGxnEd0ptbXh5tUpNUmN_hHzb1jS5cSBY3hO_cHM4piteMVoyy9sOhsvO8OltxymRFeUUZf1KcMtrtSsEkfbrdd6Lctaw-KV7EeKCUiaajz4sT3jW8FoKeFj9vbPKw984Eq8tzZ_wy6ThbIHeYLKzTOpPeu6Qhka82YSQXq4NkvSM6kqvNgZ8x6cFPWXO5DpGkvU7kNsAeYwo6YX5AcqcXa_JO0NOUR1y8i0j8SG5w9uGB9J_le3JPepym-LJ4Nuop4qvHeVZ8uzi_7y_L69svV_2n6xJE3aaybqg2NcrOgGS1kZqClO1oOAUKoI0ZBlF3NR1bQ8XIcGyAN0PLUHDoGsHqs-Ldce8S_Pc1u1WzjZAdaId-jSoHy7ucoWwz-vYf9ODX4LK7jdrl0zKeKXGkIPgYA45qCXbW4UExqrbS1EEdS9tUUlGu6G_Zm8fl6zCj-Sv601IGPh4BzGn8sBhUBIsO0NiAkJTx9v8__AKcMatS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017171612</pqid></control><display><type>article</type><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</creator><creatorcontrib>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</creatorcontrib><description>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function. [Display omitted] •mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.02.012</identifier><identifier>PMID: 29523440</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Akt ; AKT protein ; Antigens ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell activation ; Cell Respiration ; Effector cells ; Electron transport ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Energy Metabolism ; Epigenetics ; Gene expression ; Glucose ; Glucose metabolism ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen Synthase Kinase 3 beta - metabolism ; Glycolysis ; GSK3-beta ; Hexokinase ; IFN-gamma ; Immunologic Memory ; Immunological memory ; Interferon ; Intracellular Membranes - metabolism ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Membranes ; memory CD8+ T cells ; Memory cells ; Metabolism ; Microscopy ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Models, Biological ; Morphology ; mTOR ; Oxidation ; Proto-Oncogene Proteins c-akt - metabolism ; Pyruvic acid ; Rapamycin ; Rapamycin-Insensitive Companion of mTOR Protein - deficiency ; Recall ; Respiration ; Signal Transduction ; Structural members ; TOR protein ; VDAC ; γ-Interferon</subject><ispartof>Immunity (Cambridge, Mass.), 2018-03, Vol.48 (3), p.542-555.e6</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</citedby><cites>FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761318300700$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29523440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bantug, Glenn R.</creatorcontrib><creatorcontrib>Fischer, Marco</creatorcontrib><creatorcontrib>Grählert, Jasmin</creatorcontrib><creatorcontrib>Balmer, Maria L.</creatorcontrib><creatorcontrib>Unterstab, Gunhild</creatorcontrib><creatorcontrib>Develioglu, Leyla</creatorcontrib><creatorcontrib>Steiner, Rebekah</creatorcontrib><creatorcontrib>Zhang, Lianjun</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Gubser, Patrick M.</creatorcontrib><creatorcontrib>Burgener, Anne-Valérie</creatorcontrib><creatorcontrib>Sauder, Ursula</creatorcontrib><creatorcontrib>Löliger, Jordan</creatorcontrib><creatorcontrib>Belle, Réka</creatorcontrib><creatorcontrib>Dimeloe, Sarah</creatorcontrib><creatorcontrib>Lötscher, Jonas</creatorcontrib><creatorcontrib>Jauch, Annaïse</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Hönger, Gideon</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><creatorcontrib>Romero, Pedro</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Hess, Christoph</creatorcontrib><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function. [Display omitted] •mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</description><subject>Akt</subject><subject>AKT protein</subject><subject>Antigens</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell activation</subject><subject>Cell Respiration</subject><subject>Effector cells</subject><subject>Electron transport</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Energy Metabolism</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Glycolysis</subject><subject>GSK3-beta</subject><subject>Hexokinase</subject><subject>IFN-gamma</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Interferon</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Membranes</subject><subject>memory CD8+ T cells</subject><subject>Memory cells</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>mTOR</subject><subject>Oxidation</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Pyruvic acid</subject><subject>Rapamycin</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein - deficiency</subject><subject>Recall</subject><subject>Respiration</subject><subject>Signal Transduction</subject><subject>Structural members</subject><subject>TOR protein</subject><subject>VDAC</subject><subject>γ-Interferon</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGL1TAUhYsozjj6D0QCbgRpTdK0L90IUmecgRkGxnEd0ptbXh5tUpNUmN_hHzb1jS5cSBY3hO_cHM4piteMVoyy9sOhsvO8OltxymRFeUUZf1KcMtrtSsEkfbrdd6Lctaw-KV7EeKCUiaajz4sT3jW8FoKeFj9vbPKw984Eq8tzZ_wy6ThbIHeYLKzTOpPeu6Qhka82YSQXq4NkvSM6kqvNgZ8x6cFPWXO5DpGkvU7kNsAeYwo6YX5AcqcXa_JO0NOUR1y8i0j8SG5w9uGB9J_le3JPepym-LJ4Nuop4qvHeVZ8uzi_7y_L69svV_2n6xJE3aaybqg2NcrOgGS1kZqClO1oOAUKoI0ZBlF3NR1bQ8XIcGyAN0PLUHDoGsHqs-Ldce8S_Pc1u1WzjZAdaId-jSoHy7ucoWwz-vYf9ODX4LK7jdrl0zKeKXGkIPgYA45qCXbW4UExqrbS1EEdS9tUUlGu6G_Zm8fl6zCj-Sv601IGPh4BzGn8sBhUBIsO0NiAkJTx9v8__AKcMatS</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Bantug, Glenn R.</creator><creator>Fischer, Marco</creator><creator>Grählert, Jasmin</creator><creator>Balmer, Maria L.</creator><creator>Unterstab, Gunhild</creator><creator>Develioglu, Leyla</creator><creator>Steiner, Rebekah</creator><creator>Zhang, Lianjun</creator><creator>Costa, Ana S.H.</creator><creator>Gubser, Patrick M.</creator><creator>Burgener, Anne-Valérie</creator><creator>Sauder, Ursula</creator><creator>Löliger, Jordan</creator><creator>Belle, Réka</creator><creator>Dimeloe, Sarah</creator><creator>Lötscher, Jonas</creator><creator>Jauch, Annaïse</creator><creator>Recher, Mike</creator><creator>Hönger, Gideon</creator><creator>Hall, Michael N.</creator><creator>Romero, Pedro</creator><creator>Frezza, Christian</creator><creator>Hess, Christoph</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180320</creationdate><title>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</title><author>Bantug, Glenn R. ; Fischer, Marco ; Grählert, Jasmin ; Balmer, Maria L. ; Unterstab, Gunhild ; Develioglu, Leyla ; Steiner, Rebekah ; Zhang, Lianjun ; Costa, Ana S.H. ; Gubser, Patrick M. ; Burgener, Anne-Valérie ; Sauder, Ursula ; Löliger, Jordan ; Belle, Réka ; Dimeloe, Sarah ; Lötscher, Jonas ; Jauch, Annaïse ; Recher, Mike ; Hönger, Gideon ; Hall, Michael N. ; Romero, Pedro ; Frezza, Christian ; Hess, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-350ad3e89dc813d8a0c886fd20c0ccaddbb43930f6d04f1ef5c25b61e42c95413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Akt</topic><topic>AKT protein</topic><topic>Antigens</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell activation</topic><topic>Cell Respiration</topic><topic>Effector cells</topic><topic>Electron transport</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Energy Metabolism</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Glycolysis</topic><topic>GSK3-beta</topic><topic>Hexokinase</topic><topic>IFN-gamma</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Interferon</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Membranes</topic><topic>memory CD8+ T cells</topic><topic>Memory cells</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>mTOR</topic><topic>Oxidation</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Pyruvic acid</topic><topic>Rapamycin</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein - deficiency</topic><topic>Recall</topic><topic>Respiration</topic><topic>Signal Transduction</topic><topic>Structural members</topic><topic>TOR protein</topic><topic>VDAC</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bantug, Glenn R.</creatorcontrib><creatorcontrib>Fischer, Marco</creatorcontrib><creatorcontrib>Grählert, Jasmin</creatorcontrib><creatorcontrib>Balmer, Maria L.</creatorcontrib><creatorcontrib>Unterstab, Gunhild</creatorcontrib><creatorcontrib>Develioglu, Leyla</creatorcontrib><creatorcontrib>Steiner, Rebekah</creatorcontrib><creatorcontrib>Zhang, Lianjun</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Gubser, Patrick M.</creatorcontrib><creatorcontrib>Burgener, Anne-Valérie</creatorcontrib><creatorcontrib>Sauder, Ursula</creatorcontrib><creatorcontrib>Löliger, Jordan</creatorcontrib><creatorcontrib>Belle, Réka</creatorcontrib><creatorcontrib>Dimeloe, Sarah</creatorcontrib><creatorcontrib>Lötscher, Jonas</creatorcontrib><creatorcontrib>Jauch, Annaïse</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Hönger, Gideon</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><creatorcontrib>Romero, Pedro</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Hess, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bantug, Glenn R.</au><au>Fischer, Marco</au><au>Grählert, Jasmin</au><au>Balmer, Maria L.</au><au>Unterstab, Gunhild</au><au>Develioglu, Leyla</au><au>Steiner, Rebekah</au><au>Zhang, Lianjun</au><au>Costa, Ana S.H.</au><au>Gubser, Patrick M.</au><au>Burgener, Anne-Valérie</au><au>Sauder, Ursula</au><au>Löliger, Jordan</au><au>Belle, Réka</au><au>Dimeloe, Sarah</au><au>Lötscher, Jonas</au><au>Jauch, Annaïse</au><au>Recher, Mike</au><au>Hönger, Gideon</au><au>Hall, Michael N.</au><au>Romero, Pedro</au><au>Frezza, Christian</au><au>Hess, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>48</volume><issue>3</issue><spage>542</spage><epage>555.e6</epage><pages>542-555.e6</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function. [Display omitted] •mTORC2, AKT, and GSK3β are present at mitochondria-ER contact sites of CD8+ T cells•mTORC2-activated AKT inhibits GSK3β in nascent activated memory CD8+ T cells•GSK3β inhibition enables binding of HK-I to VDAC, promoting pyruvate oxidation•Pyruvate oxidation is required for rapid generation of IFN-γ in memory T cells How glucose metabolism enables rapid acquisition of effector function in memory CD8+ T cells remains poorly understood. Bantug et al. demonstrate that mitochondria-endoplasmic reticulum contact sites are signaling hubs that enable the metabolic reprogramming required for rapid CD8+ T cell recall responses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29523440</pmid><doi>10.1016/j.immuni.2018.02.012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2018-03, Vol.48 (3), p.542-555.e6
issn 1074-7613
1097-4180
language eng
recordid cdi_proquest_miscellaneous_2012910786
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Akt
AKT protein
Antigens
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell activation
Cell Respiration
Effector cells
Electron transport
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
Energy Metabolism
Epigenetics
Gene expression
Glucose
Glucose metabolism
Glycogen
Glycogen synthase kinase 3
Glycogen Synthase Kinase 3 beta - metabolism
Glycolysis
GSK3-beta
Hexokinase
IFN-gamma
Immunologic Memory
Immunological memory
Interferon
Intracellular Membranes - metabolism
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Mechanistic Target of Rapamycin Complex 2 - metabolism
Membranes
memory CD8+ T cells
Memory cells
Metabolism
Microscopy
Mitochondria
Mitochondria - metabolism
Mitochondria - ultrastructure
Models, Biological
Morphology
mTOR
Oxidation
Proto-Oncogene Proteins c-akt - metabolism
Pyruvic acid
Rapamycin
Rapamycin-Insensitive Companion of mTOR Protein - deficiency
Recall
Respiration
Signal Transduction
Structural members
TOR protein
VDAC
γ-Interferon
title Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondria-Endoplasmic%20Reticulum%20Contact%20Sites%20Function%20as%20Immunometabolic%20Hubs%20that%20Orchestrate%20the%20Rapid%20Recall%20Response%20of%20Memory%20CD8+%20T%20Cells&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Bantug,%20Glenn%20R.&rft.date=2018-03-20&rft.volume=48&rft.issue=3&rft.spage=542&rft.epage=555.e6&rft.pages=542-555.e6&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.02.012&rft_dat=%3Cproquest_cross%3E2012910786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017171612&rft_id=info:pmid/29523440&rft_els_id=S1074761318300700&rfr_iscdi=true