Design of Single-Atom Co–N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability

We develop an N-coordination strategy to design a robust CO2 reduction reaction (CO2RR) electrocatalyst with atomically dispersed Co–N5 site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CO2RR with CO Faradaic efficiency (FECO) above 90%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-03, Vol.140 (12), p.4218-4221
Hauptverfasser: Pan, Yuan, Lin, Rui, Chen, Yinjuan, Liu, Shoujie, Zhu, Wei, Cao, Xing, Chen, Wenxing, Wu, Konglin, Cheong, Weng-Chon, Wang, Yu, Zheng, Lirong, Luo, Jun, Lin, Yan, Liu, Yunqi, Liu, Chenguang, Li, Jun, Lu, Qi, Chen, Xin, Wang, Dingsheng, Peng, Qing, Chen, Chen, Li, Yadong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop an N-coordination strategy to design a robust CO2 reduction reaction (CO2RR) electrocatalyst with atomically dispersed Co–N5 site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CO2RR with CO Faradaic efficiency (FECO) above 90% over a wide potential range from −0.57 to −0.88 V (the FECO exceeded 99% at −0.73 and −0.79 V). The CO current density and FECO remained nearly unchanged after electrolyzing 10 h, revealing remarkable stability. Experiments and density functional theory calculations demonstrate single-atom Co–N5 site is the dominating active center simultaneously for CO2 activation, the rapid formation of key intermediate COOH* as well as the desorption of CO.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b00814