Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes

Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin–angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2018-04, Vol.80 (4), p.880-905
Hauptverfasser: Pilvankar, Minu R., Higgins, Michele A., Ford Versypt, Ashlee N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 4
container_start_page 880
container_title Bulletin of mathematical biology
container_volume 80
creator Pilvankar, Minu R.
Higgins, Michele A.
Ford Versypt, Ashlee N.
description Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin–angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression. Graphical Abstract
doi_str_mv 10.1007/s11538-018-0408-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2012910319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012910319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7b087526c7a4ab1828216664b4f9473aad03214bc1231442eca5b6216e4f41b13</originalsourceid><addsrcrecordid>eNp1kMtu1TAQhi0EoqeFB-gGWeqGTcrMxLl4WRVoK50KxGWL5TiTNlViH-JkcXa8Q9-wT4KPTgGpEgvLlvz9_4w-IY4RThGgehcRi7zOANNRUGfqmVhhQZTpEui5WAFoympScCAOY7yDlNG5fikOSBcERalX4se1nW95tHPv7CCvQ8uD7MIkL4bFhcjyPW_Yt-wdy9DJhMp12JFf2Pf-4df9mb_pw8w-9l5-3caZR5len0Mb3Hbm-Eq86OwQ-fXjfSS-f_zw7fwyW3-6uDo_W2cur2jOqgbqqqDSVVbZBmuqCcuyVI3qtKpya1vICVXjkHJUitjZoikTw6pT2GB-JN7uezdT-LlwnM3YR8fDYD2HJRoCJI2Qo07oyRP0LiyTT9vtqCKNqytIFO4pN4UYJ-7MZupHO20NgtnJN3v5Jsk3O_lGpcybx-alGbn9m_hjOwG0B2L68jc8_Rv9_9bfOESOKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015473870</pqid></control><display><type>article</type><title>Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pilvankar, Minu R. ; Higgins, Michele A. ; Ford Versypt, Ashlee N.</creator><creatorcontrib>Pilvankar, Minu R. ; Higgins, Michele A. ; Ford Versypt, Ashlee N.</creatorcontrib><description>Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin–angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression. Graphical Abstract</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-018-0408-4</identifier><identifier>PMID: 29520569</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angiotensin ; Angiotensin II ; Angiotensin II - metabolism ; Animals ; Cell Biology ; Damage ; Diabetes ; Diabetes mellitus ; Diabetic Nephropathies - etiology ; Diabetic Nephropathies - metabolism ; Dose dependency ; Glucose ; Glucose - metabolism ; Humans ; Hyperglycemia ; Kidneys ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Original Article ; Parameter estimation ; Parameter identification ; Parameter sensitivity ; Parameters ; Peptides ; Podocytes - metabolism ; Ramp functions ; Regression analysis ; Renal failure ; Renin ; Renin-Angiotensin System - physiology ; Sensitivity analysis ; Signal Transduction ; Signaling ; Tracks (paths)</subject><ispartof>Bulletin of mathematical biology, 2018-04, Vol.80 (4), p.880-905</ispartof><rights>Society for Mathematical Biology 2018</rights><rights>Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7b087526c7a4ab1828216664b4f9473aad03214bc1231442eca5b6216e4f41b13</citedby><cites>FETCH-LOGICAL-c372t-7b087526c7a4ab1828216664b4f9473aad03214bc1231442eca5b6216e4f41b13</cites><orcidid>0000-0001-9059-5703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-018-0408-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-018-0408-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29520569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pilvankar, Minu R.</creatorcontrib><creatorcontrib>Higgins, Michele A.</creatorcontrib><creatorcontrib>Ford Versypt, Ashlee N.</creatorcontrib><title>Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin–angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression. Graphical Abstract</description><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Cell Biology</subject><subject>Damage</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Nephropathies - etiology</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Dose dependency</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Peptides</subject><subject>Podocytes - metabolism</subject><subject>Ramp functions</subject><subject>Regression analysis</subject><subject>Renal failure</subject><subject>Renin</subject><subject>Renin-Angiotensin System - physiology</subject><subject>Sensitivity analysis</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Tracks (paths)</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtu1TAQhi0EoqeFB-gGWeqGTcrMxLl4WRVoK50KxGWL5TiTNlViH-JkcXa8Q9-wT4KPTgGpEgvLlvz9_4w-IY4RThGgehcRi7zOANNRUGfqmVhhQZTpEui5WAFoympScCAOY7yDlNG5fikOSBcERalX4se1nW95tHPv7CCvQ8uD7MIkL4bFhcjyPW_Yt-wdy9DJhMp12JFf2Pf-4df9mb_pw8w-9l5-3caZR5len0Mb3Hbm-Eq86OwQ-fXjfSS-f_zw7fwyW3-6uDo_W2cur2jOqgbqqqDSVVbZBmuqCcuyVI3qtKpya1vICVXjkHJUitjZoikTw6pT2GB-JN7uezdT-LlwnM3YR8fDYD2HJRoCJI2Qo07oyRP0LiyTT9vtqCKNqytIFO4pN4UYJ-7MZupHO20NgtnJN3v5Jsk3O_lGpcybx-alGbn9m_hjOwG0B2L68jc8_Rv9_9bfOESOKg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pilvankar, Minu R.</creator><creator>Higgins, Michele A.</creator><creator>Ford Versypt, Ashlee N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9059-5703</orcidid></search><sort><creationdate>20180401</creationdate><title>Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes</title><author>Pilvankar, Minu R. ; Higgins, Michele A. ; Ford Versypt, Ashlee N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7b087526c7a4ab1828216664b4f9473aad03214bc1231442eca5b6216e4f41b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Cell Biology</topic><topic>Damage</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Nephropathies - etiology</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Dose dependency</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Peptides</topic><topic>Podocytes - metabolism</topic><topic>Ramp functions</topic><topic>Regression analysis</topic><topic>Renal failure</topic><topic>Renin</topic><topic>Renin-Angiotensin System - physiology</topic><topic>Sensitivity analysis</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Tracks (paths)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilvankar, Minu R.</creatorcontrib><creatorcontrib>Higgins, Michele A.</creatorcontrib><creatorcontrib>Ford Versypt, Ashlee N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilvankar, Minu R.</au><au>Higgins, Michele A.</au><au>Ford Versypt, Ashlee N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>80</volume><issue>4</issue><spage>880</spage><epage>905</epage><pages>880-905</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin–angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29520569</pmid><doi>10.1007/s11538-018-0408-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9059-5703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2018-04, Vol.80 (4), p.880-905
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2012910319
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Angiotensin
Angiotensin II
Angiotensin II - metabolism
Animals
Cell Biology
Damage
Diabetes
Diabetes mellitus
Diabetic Nephropathies - etiology
Diabetic Nephropathies - metabolism
Dose dependency
Glucose
Glucose - metabolism
Humans
Hyperglycemia
Kidneys
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
Original Article
Parameter estimation
Parameter identification
Parameter sensitivity
Parameters
Peptides
Podocytes - metabolism
Ramp functions
Regression analysis
Renal failure
Renin
Renin-Angiotensin System - physiology
Sensitivity analysis
Signal Transduction
Signaling
Tracks (paths)
title Mathematical Model for Glucose Dependence of the Local Renin–Angiotensin System in Podocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20for%20Glucose%20Dependence%20of%20the%20Local%20Renin%E2%80%93Angiotensin%20System%20in%20Podocytes&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Pilvankar,%20Minu%20R.&rft.date=2018-04-01&rft.volume=80&rft.issue=4&rft.spage=880&rft.epage=905&rft.pages=880-905&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-018-0408-4&rft_dat=%3Cproquest_cross%3E2012910319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015473870&rft_id=info:pmid/29520569&rfr_iscdi=true