An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods

This study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regulatory toxicology and pharmacology 2006-03, Vol.44 (2), p.97-110
Hauptverfasser: Matthews, Edwin J., Kruhlak, Naomi L., Cimino, Michael C., Benz, R. Daniel, Contrera, Joseph F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 2
container_start_page 97
container_title Regulatory toxicology and pharmacology
container_volume 44
creator Matthews, Edwin J.
Kruhlak, Naomi L.
Cimino, Michael C.
Benz, R. Daniel
Contrera, Joseph F.
description This study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 13 of 14 (11 genetox and 3 reprotox) tests that we found correlated with results of rodent carcinogenicity bioassays (rcbioassays) [Matthews, E.J., Kruhlak, N.L., Cimino, M.C., Benz, R.D., Contrera, J.F., 2005b. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul. Toxicol. Pharmacol.]. Each of the 21 modules was evaluated by cross-validation experiments and those with high specificity (SP) and positive predictivity (PPV) were used to predict activities of the 1442 chemicals tested for carcinogenicity for which actual genetox or reprotox data were missing. The expanded data sets had ∼70% in silico data pooled with ∼30% experimental data. Based upon SP and PPV, the expanded data sets showed good correlation with carcinogenicity testing results and had correlation indicator (CI, the average of SP and PPV) values of 75.5–88.7%. Conversely, expanded data sets for 9 non-correlated test endpoints were shown not to correlate with carcinogenicity results (CI values
doi_str_mv 10.1016/j.yrtph.2005.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20120365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273230005001868</els_id><sourcerecordid>20120365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-314765da9593b415b18cadf6e8d021c5b3d8969c8b1bfd3e765d22f427d46d223</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhS0EYsrAEyAhr1iR4J8kTZBYjEb8VBqJDawtx76ZuVViF9up6NvxaDhtJIYNK9vH3z3H1iHkNWclZ7x5vy9PIR0eSsFYnZWSseoJ2XDWNQUTXf2UbJjYykJIxq7Iixj3jDHRttvn5Io3shaylRvy-8ZR7fR4ihipH-g9OEhoaPK_0GA6vaMBDsHb2SQ8QkYttXCE0R8mcEmPj8Dlzuhg0Pnschap1Ul_oLtdSXc28zig0Qm9W6P8eVq7FNecR-d_7SKdI7p7io5GHNF4OkF68Da-JM8GPUZ4ta7X5MfnT99vvxZ3377sbm_uCiPbNhWSV9umtrqrO9lXvO55a7QdGmgtE9zUvbRt13Sm7Xk_WAkLLMRQia2tmryT1-TtxTe_8ucMMakJo4Fx1A78HJVgXDDZ1BmUF9AEH2OAQR0CTjqcFGdqKU7t1bk4tRS3iLm4PPVmtZ_7CezfmbWpDHy8AJA_eUQIKhoEZ8BiAJOU9fjfgD8oqbA_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20120365</pqid></control><display><type>article</type><title>An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Matthews, Edwin J. ; Kruhlak, Naomi L. ; Cimino, Michael C. ; Benz, R. Daniel ; Contrera, Joseph F.</creator><creatorcontrib>Matthews, Edwin J. ; Kruhlak, Naomi L. ; Cimino, Michael C. ; Benz, R. Daniel ; Contrera, Joseph F.</creatorcontrib><description>This study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 13 of 14 (11 genetox and 3 reprotox) tests that we found correlated with results of rodent carcinogenicity bioassays (rcbioassays) [Matthews, E.J., Kruhlak, N.L., Cimino, M.C., Benz, R.D., Contrera, J.F., 2005b. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul. Toxicol. Pharmacol.]. Each of the 21 modules was evaluated by cross-validation experiments and those with high specificity (SP) and positive predictivity (PPV) were used to predict activities of the 1442 chemicals tested for carcinogenicity for which actual genetox or reprotox data were missing. The expanded data sets had ∼70% in silico data pooled with ∼30% experimental data. Based upon SP and PPV, the expanded data sets showed good correlation with carcinogenicity testing results and had correlation indicator (CI, the average of SP and PPV) values of 75.5–88.7%. Conversely, expanded data sets for 9 non-correlated test endpoints were shown not to correlate with carcinogenicity results (CI values &lt;75%). Results also showed that when Salmonella mutagenic carcinogens were removed from the 12 correlated, expanded data sets, only 7 endpoints showed added value by detecting significantly more additional carcinogens than non-carcinogens.</description><identifier>ISSN: 0273-2300</identifier><identifier>EISSN: 1096-0295</identifier><identifier>DOI: 10.1016/j.yrtph.2005.10.004</identifier><identifier>PMID: 16352383</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Carcinogenicity ; Carcinogenicity Tests ; Carcinogens - classification ; Carcinogens - toxicity ; Computational toxicology ; Computer Simulation ; Evaluation Studies as Topic ; Genetic toxicity ; Genetox ; MC4PC ; Models, Biological ; Mutagenicity Tests ; Predictive modeling ; Predictive Value of Tests ; Quantitative Structure-Activity Relationship ; Quantitative structure–activity relationships ; Reproduction - drug effects ; Reproductive and developmental toxicity ; Reprotox ; Rodent carcinogenicity bioassay ; Salmonella ; Sensitivity and Specificity ; Software ; Surrogate ; Toxicity Tests, Chronic</subject><ispartof>Regulatory toxicology and pharmacology, 2006-03, Vol.44 (2), p.97-110</ispartof><rights>2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-314765da9593b415b18cadf6e8d021c5b3d8969c8b1bfd3e765d22f427d46d223</citedby><cites>FETCH-LOGICAL-c388t-314765da9593b415b18cadf6e8d021c5b3d8969c8b1bfd3e765d22f427d46d223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0273230005001868$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16352383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Cimino, Michael C.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><creatorcontrib>Contrera, Joseph F.</creatorcontrib><title>An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods</title><title>Regulatory toxicology and pharmacology</title><addtitle>Regul Toxicol Pharmacol</addtitle><description>This study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 13 of 14 (11 genetox and 3 reprotox) tests that we found correlated with results of rodent carcinogenicity bioassays (rcbioassays) [Matthews, E.J., Kruhlak, N.L., Cimino, M.C., Benz, R.D., Contrera, J.F., 2005b. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul. Toxicol. Pharmacol.]. Each of the 21 modules was evaluated by cross-validation experiments and those with high specificity (SP) and positive predictivity (PPV) were used to predict activities of the 1442 chemicals tested for carcinogenicity for which actual genetox or reprotox data were missing. The expanded data sets had ∼70% in silico data pooled with ∼30% experimental data. Based upon SP and PPV, the expanded data sets showed good correlation with carcinogenicity testing results and had correlation indicator (CI, the average of SP and PPV) values of 75.5–88.7%. Conversely, expanded data sets for 9 non-correlated test endpoints were shown not to correlate with carcinogenicity results (CI values &lt;75%). Results also showed that when Salmonella mutagenic carcinogens were removed from the 12 correlated, expanded data sets, only 7 endpoints showed added value by detecting significantly more additional carcinogens than non-carcinogens.</description><subject>Animals</subject><subject>Carcinogenicity</subject><subject>Carcinogenicity Tests</subject><subject>Carcinogens - classification</subject><subject>Carcinogens - toxicity</subject><subject>Computational toxicology</subject><subject>Computer Simulation</subject><subject>Evaluation Studies as Topic</subject><subject>Genetic toxicity</subject><subject>Genetox</subject><subject>MC4PC</subject><subject>Models, Biological</subject><subject>Mutagenicity Tests</subject><subject>Predictive modeling</subject><subject>Predictive Value of Tests</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Quantitative structure–activity relationships</subject><subject>Reproduction - drug effects</subject><subject>Reproductive and developmental toxicity</subject><subject>Reprotox</subject><subject>Rodent carcinogenicity bioassay</subject><subject>Salmonella</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Surrogate</subject><subject>Toxicity Tests, Chronic</subject><issn>0273-2300</issn><issn>1096-0295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2O0zAUhS0EYsrAEyAhr1iR4J8kTZBYjEb8VBqJDawtx76ZuVViF9up6NvxaDhtJIYNK9vH3z3H1iHkNWclZ7x5vy9PIR0eSsFYnZWSseoJ2XDWNQUTXf2UbJjYykJIxq7Iixj3jDHRttvn5Io3shaylRvy-8ZR7fR4ihipH-g9OEhoaPK_0GA6vaMBDsHb2SQ8QkYttXCE0R8mcEmPj8Dlzuhg0Pnschap1Ul_oLtdSXc28zig0Qm9W6P8eVq7FNecR-d_7SKdI7p7io5GHNF4OkF68Da-JM8GPUZ4ta7X5MfnT99vvxZ3377sbm_uCiPbNhWSV9umtrqrO9lXvO55a7QdGmgtE9zUvbRt13Sm7Xk_WAkLLMRQia2tmryT1-TtxTe_8ucMMakJo4Fx1A78HJVgXDDZ1BmUF9AEH2OAQR0CTjqcFGdqKU7t1bk4tRS3iLm4PPVmtZ_7CezfmbWpDHy8AJA_eUQIKhoEZ8BiAJOU9fjfgD8oqbA_</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Matthews, Edwin J.</creator><creator>Kruhlak, Naomi L.</creator><creator>Cimino, Michael C.</creator><creator>Benz, R. Daniel</creator><creator>Contrera, Joseph F.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T2</scope><scope>7U2</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20060301</creationdate><title>An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods</title><author>Matthews, Edwin J. ; Kruhlak, Naomi L. ; Cimino, Michael C. ; Benz, R. Daniel ; Contrera, Joseph F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-314765da9593b415b18cadf6e8d021c5b3d8969c8b1bfd3e765d22f427d46d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Carcinogenicity</topic><topic>Carcinogenicity Tests</topic><topic>Carcinogens - classification</topic><topic>Carcinogens - toxicity</topic><topic>Computational toxicology</topic><topic>Computer Simulation</topic><topic>Evaluation Studies as Topic</topic><topic>Genetic toxicity</topic><topic>Genetox</topic><topic>MC4PC</topic><topic>Models, Biological</topic><topic>Mutagenicity Tests</topic><topic>Predictive modeling</topic><topic>Predictive Value of Tests</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Quantitative structure–activity relationships</topic><topic>Reproduction - drug effects</topic><topic>Reproductive and developmental toxicity</topic><topic>Reprotox</topic><topic>Rodent carcinogenicity bioassay</topic><topic>Salmonella</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Surrogate</topic><topic>Toxicity Tests, Chronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Cimino, Michael C.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><creatorcontrib>Contrera, Joseph F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Regulatory toxicology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, Edwin J.</au><au>Kruhlak, Naomi L.</au><au>Cimino, Michael C.</au><au>Benz, R. Daniel</au><au>Contrera, Joseph F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods</atitle><jtitle>Regulatory toxicology and pharmacology</jtitle><addtitle>Regul Toxicol Pharmacol</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>44</volume><issue>2</issue><spage>97</spage><epage>110</epage><pages>97-110</pages><issn>0273-2300</issn><eissn>1096-0295</eissn><abstract>This study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 13 of 14 (11 genetox and 3 reprotox) tests that we found correlated with results of rodent carcinogenicity bioassays (rcbioassays) [Matthews, E.J., Kruhlak, N.L., Cimino, M.C., Benz, R.D., Contrera, J.F., 2005b. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul. Toxicol. Pharmacol.]. Each of the 21 modules was evaluated by cross-validation experiments and those with high specificity (SP) and positive predictivity (PPV) were used to predict activities of the 1442 chemicals tested for carcinogenicity for which actual genetox or reprotox data were missing. The expanded data sets had ∼70% in silico data pooled with ∼30% experimental data. Based upon SP and PPV, the expanded data sets showed good correlation with carcinogenicity testing results and had correlation indicator (CI, the average of SP and PPV) values of 75.5–88.7%. Conversely, expanded data sets for 9 non-correlated test endpoints were shown not to correlate with carcinogenicity results (CI values &lt;75%). Results also showed that when Salmonella mutagenic carcinogens were removed from the 12 correlated, expanded data sets, only 7 endpoints showed added value by detecting significantly more additional carcinogens than non-carcinogens.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>16352383</pmid><doi>10.1016/j.yrtph.2005.10.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-2300
ispartof Regulatory toxicology and pharmacology, 2006-03, Vol.44 (2), p.97-110
issn 0273-2300
1096-0295
language eng
recordid cdi_proquest_miscellaneous_20120365
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Carcinogenicity
Carcinogenicity Tests
Carcinogens - classification
Carcinogens - toxicity
Computational toxicology
Computer Simulation
Evaluation Studies as Topic
Genetic toxicity
Genetox
MC4PC
Models, Biological
Mutagenicity Tests
Predictive modeling
Predictive Value of Tests
Quantitative Structure-Activity Relationship
Quantitative structure–activity relationships
Reproduction - drug effects
Reproductive and developmental toxicity
Reprotox
Rodent carcinogenicity bioassay
Salmonella
Sensitivity and Specificity
Software
Surrogate
Toxicity Tests, Chronic
title An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20of%20genetic%20toxicity,%20reproductive%20and%20developmental%20toxicity,%20and%20carcinogenicity%20data:%20II.%20Identification%20of%20genotoxicants,%20reprotoxicants,%20and%20carcinogens%20using%20in%20silico%20methods&rft.jtitle=Regulatory%20toxicology%20and%20pharmacology&rft.au=Matthews,%20Edwin%20J.&rft.date=2006-03-01&rft.volume=44&rft.issue=2&rft.spage=97&rft.epage=110&rft.pages=97-110&rft.issn=0273-2300&rft.eissn=1096-0295&rft_id=info:doi/10.1016/j.yrtph.2005.10.004&rft_dat=%3Cproquest_cross%3E20120365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20120365&rft_id=info:pmid/16352383&rft_els_id=S0273230005001868&rfr_iscdi=true