Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview

In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2018-03, Vol.58 (3), p.565-578
1. Verfasser: Riniker, Sereina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 3
container_start_page 565
container_title Journal of chemical information and modeling
container_volume 58
creator Riniker, Sereina
description In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)­molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.
doi_str_mv 10.1021/acs.jcim.8b00042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011612740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011612740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</originalsourceid><addsrcrecordid>eNp1kc9P2zAUx60JtELZfSdkaRcOpDzbiZPsVhXKkDoViU3aLXKcl9VVEoOddOt_j7u2HCZx8pP1-X7fjy8hnxlMGHB2o7SfrLVpJ1kJADH_QM5YEudRLuHXybFOcjki596vAYTIJf9IRjxPWODZGVnPzV-sotlKud9Ip71tje-NpnPrNNK5wabytLaOfrcN6qFRjt5uO9Ua7emTacNHb2znqelov0I6s12FnceKPq6Ux6902tHlBt3G4J8LclqrxuOnwzsmP-d3P2bfosXy_mE2XUQqlmkfCQalLvNEqJoJSIHLrM6w1pUGWYsyY0zoLFEpK0WS5Sg0ZLHkSSxjxbisUzEmV3vfZ2dfBvR9EXbS2DSqQzv4ggNjkvE0hoB--Q9d28F1YbpApTyVeRqLQMGe0s5677Aunp1pldsWDIpdDkXIodjlUBxyCJLLg_FQtli9CY6HD8D1HvgnPTZ91-8VkpySeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072769743</pqid></control><display><type>article</type><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><source>MEDLINE</source><source>ACS Publications</source><creator>Riniker, Sereina</creator><creatorcontrib>Riniker, Sereina</creatorcontrib><description>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)­molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00042</identifier><identifier>PMID: 29510041</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Atoms &amp; subatomic particles ; Computer simulation ; Models, Chemical ; Molecular chains ; Molecular chemistry ; Molecular dynamics ; Molecular Dynamics Simulation ; Monte Carlo simulation ; Organic chemistry ; Proteins ; Quantum chemistry ; Quantum Theory ; Software ; Static Electricity</subject><ispartof>Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.565-578</ispartof><rights>Copyright American Chemical Society Mar 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</citedby><cites>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</cites><orcidid>0000-0003-1893-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00042$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00042$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29510041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riniker, Sereina</creatorcontrib><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)­molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</description><subject>Algorithms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Computer simulation</subject><subject>Models, Chemical</subject><subject>Molecular chains</subject><subject>Molecular chemistry</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo simulation</subject><subject>Organic chemistry</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Software</subject><subject>Static Electricity</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9P2zAUx60JtELZfSdkaRcOpDzbiZPsVhXKkDoViU3aLXKcl9VVEoOddOt_j7u2HCZx8pP1-X7fjy8hnxlMGHB2o7SfrLVpJ1kJADH_QM5YEudRLuHXybFOcjki596vAYTIJf9IRjxPWODZGVnPzV-sotlKud9Ip71tje-NpnPrNNK5wabytLaOfrcN6qFRjt5uO9Ua7emTacNHb2znqelov0I6s12FnceKPq6Ux6902tHlBt3G4J8LclqrxuOnwzsmP-d3P2bfosXy_mE2XUQqlmkfCQalLvNEqJoJSIHLrM6w1pUGWYsyY0zoLFEpK0WS5Sg0ZLHkSSxjxbisUzEmV3vfZ2dfBvR9EXbS2DSqQzv4ggNjkvE0hoB--Q9d28F1YbpApTyVeRqLQMGe0s5677Aunp1pldsWDIpdDkXIodjlUBxyCJLLg_FQtli9CY6HD8D1HvgnPTZ91-8VkpySeQ</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Riniker, Sereina</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid></search><sort><creationdate>20180326</creationdate><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><author>Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Computer simulation</topic><topic>Models, Chemical</topic><topic>Molecular chains</topic><topic>Molecular chemistry</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo simulation</topic><topic>Organic chemistry</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Software</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-03-26</date><risdate>2018</risdate><volume>58</volume><issue>3</issue><spage>565</spage><epage>578</epage><pages>565-578</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)­molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29510041</pmid><doi>10.1021/acs.jcim.8b00042</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.565-578
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2011612740
source MEDLINE; ACS Publications
subjects Algorithms
Atoms & subatomic particles
Computer simulation
Models, Chemical
Molecular chains
Molecular chemistry
Molecular dynamics
Molecular Dynamics Simulation
Monte Carlo simulation
Organic chemistry
Proteins
Quantum chemistry
Quantum Theory
Software
Static Electricity
title Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Charge%20Atomistic%20Force%20Fields%20for%20Molecular%20Dynamics%20Simulations%20in%20the%20Condensed%20Phase:%20An%20Overview&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Riniker,%20Sereina&rft.date=2018-03-26&rft.volume=58&rft.issue=3&rft.spage=565&rft.epage=578&rft.pages=565-578&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00042&rft_dat=%3Cproquest_cross%3E2011612740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072769743&rft_id=info:pmid/29510041&rfr_iscdi=true