Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview
In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2018-03, Vol.58 (3), p.565-578 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 3 |
container_start_page | 565 |
container_title | Journal of chemical information and modeling |
container_volume | 58 |
creator | Riniker, Sereina |
description | In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting. |
doi_str_mv | 10.1021/acs.jcim.8b00042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011612740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011612740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</originalsourceid><addsrcrecordid>eNp1kc9P2zAUx60JtELZfSdkaRcOpDzbiZPsVhXKkDoViU3aLXKcl9VVEoOddOt_j7u2HCZx8pP1-X7fjy8hnxlMGHB2o7SfrLVpJ1kJADH_QM5YEudRLuHXybFOcjki596vAYTIJf9IRjxPWODZGVnPzV-sotlKud9Ip71tje-NpnPrNNK5wabytLaOfrcN6qFRjt5uO9Ua7emTacNHb2znqelov0I6s12FnceKPq6Ux6902tHlBt3G4J8LclqrxuOnwzsmP-d3P2bfosXy_mE2XUQqlmkfCQalLvNEqJoJSIHLrM6w1pUGWYsyY0zoLFEpK0WS5Sg0ZLHkSSxjxbisUzEmV3vfZ2dfBvR9EXbS2DSqQzv4ggNjkvE0hoB--Q9d28F1YbpApTyVeRqLQMGe0s5677Aunp1pldsWDIpdDkXIodjlUBxyCJLLg_FQtli9CY6HD8D1HvgnPTZ91-8VkpySeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072769743</pqid></control><display><type>article</type><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><source>MEDLINE</source><source>ACS Publications</source><creator>Riniker, Sereina</creator><creatorcontrib>Riniker, Sereina</creatorcontrib><description>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00042</identifier><identifier>PMID: 29510041</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Atoms & subatomic particles ; Computer simulation ; Models, Chemical ; Molecular chains ; Molecular chemistry ; Molecular dynamics ; Molecular Dynamics Simulation ; Monte Carlo simulation ; Organic chemistry ; Proteins ; Quantum chemistry ; Quantum Theory ; Software ; Static Electricity</subject><ispartof>Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.565-578</ispartof><rights>Copyright American Chemical Society Mar 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</citedby><cites>FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</cites><orcidid>0000-0003-1893-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.8b00042$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.8b00042$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29510041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riniker, Sereina</creatorcontrib><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</description><subject>Algorithms</subject><subject>Atoms & subatomic particles</subject><subject>Computer simulation</subject><subject>Models, Chemical</subject><subject>Molecular chains</subject><subject>Molecular chemistry</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo simulation</subject><subject>Organic chemistry</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Software</subject><subject>Static Electricity</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9P2zAUx60JtELZfSdkaRcOpDzbiZPsVhXKkDoViU3aLXKcl9VVEoOddOt_j7u2HCZx8pP1-X7fjy8hnxlMGHB2o7SfrLVpJ1kJADH_QM5YEudRLuHXybFOcjki596vAYTIJf9IRjxPWODZGVnPzV-sotlKud9Ip71tje-NpnPrNNK5wabytLaOfrcN6qFRjt5uO9Ua7emTacNHb2znqelov0I6s12FnceKPq6Ux6902tHlBt3G4J8LclqrxuOnwzsmP-d3P2bfosXy_mE2XUQqlmkfCQalLvNEqJoJSIHLrM6w1pUGWYsyY0zoLFEpK0WS5Sg0ZLHkSSxjxbisUzEmV3vfZ2dfBvR9EXbS2DSqQzv4ggNjkvE0hoB--Q9d28F1YbpApTyVeRqLQMGe0s5677Aunp1pldsWDIpdDkXIodjlUBxyCJLLg_FQtli9CY6HD8D1HvgnPTZ91-8VkpySeQ</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Riniker, Sereina</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid></search><sort><creationdate>20180326</creationdate><title>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</title><author>Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-310bcb953af13070268f8efcdc06f3b8113c85a71b3589e3c084625464a126f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Atoms & subatomic particles</topic><topic>Computer simulation</topic><topic>Models, Chemical</topic><topic>Molecular chains</topic><topic>Molecular chemistry</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo simulation</topic><topic>Organic chemistry</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Software</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-03-26</date><risdate>2018</risdate><volume>58</volume><issue>3</issue><spage>565</spage><epage>578</epage><pages>565-578</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29510041</pmid><doi>10.1021/acs.jcim.8b00042</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.565-578 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2011612740 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Atoms & subatomic particles Computer simulation Models, Chemical Molecular chains Molecular chemistry Molecular dynamics Molecular Dynamics Simulation Monte Carlo simulation Organic chemistry Proteins Quantum chemistry Quantum Theory Software Static Electricity |
title | Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Charge%20Atomistic%20Force%20Fields%20for%20Molecular%20Dynamics%20Simulations%20in%20the%20Condensed%20Phase:%20An%20Overview&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Riniker,%20Sereina&rft.date=2018-03-26&rft.volume=58&rft.issue=3&rft.spage=565&rft.epage=578&rft.pages=565-578&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00042&rft_dat=%3Cproquest_cross%3E2011612740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072769743&rft_id=info:pmid/29510041&rfr_iscdi=true |