Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells

Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-04, Vol.30 (15), p.e1706411-n/a
Hauptverfasser: Lu, Dylan, Qian, Haoliang, Wang, Kangwei, Shen, Hao, Wei, Feifei, Jiang, Yunfeng, Fullerton, Eric E., Yu, Paul K. L., Liu, Zhaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e1706411
container_title Advanced materials (Weinheim)
container_volume 30
creator Lu, Dylan
Qian, Haoliang
Wang, Kangwei
Shen, Hao
Wei, Feifei
Jiang, Yunfeng
Fullerton, Eric E.
Yu, Paul K. L.
Liu, Zhaowei
description Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks. Ultrafast and bright green InGaN quantum wells are demonstrated by utilizing nanopatterned Ag–Si multilayer hyperbolic metamaterials. The spontaneous recombination rate is enhanced by more than two orders of magnitude across a broadband of working wavelengths, with over tenfold enhancement in the peak emission intensity. The integration of hyperbolic metamaterials with quantum wells will lead to light‐emitting diodes beyond 100 GHz.
doi_str_mv 10.1002/adma.201706411
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011611472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011611472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4791-db5729969cef57509fd2c20ce1737df6ff57f968d7119b766d77b6c3ad038d383</originalsourceid><addsrcrecordid>eNqFkUtLJDEUhYM4aOu4dSkBN26qJzdVlVSWbTu2gt3DgOKySOWhJfVo82Dof2-kWwU3s7pw-c7hcA5Cp0CmQAj9JXUvp5QAJ6wA2EMTKClkBRHlPpoQkZeZYEV1iI68fyGECEbYATqkogRKoZwgu5LD6IOLKkTXDk94GbvQdnJjHL7ZrI1rxq5VeGmC7GUwrpWdx3Z0-KELTlrpA5aDxpeufXoOeOGMGfDtsJAr_DfKIcQeP5qu8z_RD5uU5mR3j9HD9e_7-U1292dxO5_dZargAjLdlJwKwYQytuQlEVZTRYkywHOuLbPpawWrNAcQDWdMc94wlUtN8krnVX6MLra-aze-RuND3bdepQRyMGP0dWoKGEDBaULPv6EvY3RDSpcoWlQVMFIkarqllBu9d8bWa9f20m1qIPX7AvX7AvXnAklwtrONTW_0J_5ReQLEFvjXdmbzH7t6drWcfZm_AY9Xkjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024881604</pqid></control><display><type>article</type><title>Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lu, Dylan ; Qian, Haoliang ; Wang, Kangwei ; Shen, Hao ; Wei, Feifei ; Jiang, Yunfeng ; Fullerton, Eric E. ; Yu, Paul K. L. ; Liu, Zhaowei</creator><creatorcontrib>Lu, Dylan ; Qian, Haoliang ; Wang, Kangwei ; Shen, Hao ; Wei, Feifei ; Jiang, Yunfeng ; Fullerton, Eric E. ; Yu, Paul K. L. ; Liu, Zhaowei</creatorcontrib><description>Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks. Ultrafast and bright green InGaN quantum wells are demonstrated by utilizing nanopatterned Ag–Si multilayer hyperbolic metamaterials. The spontaneous recombination rate is enhanced by more than two orders of magnitude across a broadband of working wavelengths, with over tenfold enhancement in the peak emission intensity. The integration of hyperbolic metamaterials with quantum wells will lead to light‐emitting diodes beyond 100 GHz.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201706411</identifier><identifier>PMID: 29512215</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bandwidths ; Broadband ; Carrier recombination ; Electronic devices ; Gallium nitrides ; Genetic recombination ; Indium gallium nitrides ; Light emission ; Light emitting diodes ; Materials science ; Metamaterials ; Modulation ; Multilayers ; Optoelectronic devices ; Organic light emitting diodes ; plasmonics ; Purcell effect ; Quantum wells ; Wavelengths ; Wireless communications ; Wireless networks</subject><ispartof>Advanced materials (Weinheim), 2018-04, Vol.30 (15), p.e1706411-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4791-db5729969cef57509fd2c20ce1737df6ff57f968d7119b766d77b6c3ad038d383</citedby><cites>FETCH-LOGICAL-c4791-db5729969cef57509fd2c20ce1737df6ff57f968d7119b766d77b6c3ad038d383</cites><orcidid>0000-0002-9238-2063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201706411$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201706411$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29512215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Dylan</creatorcontrib><creatorcontrib>Qian, Haoliang</creatorcontrib><creatorcontrib>Wang, Kangwei</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Wei, Feifei</creatorcontrib><creatorcontrib>Jiang, Yunfeng</creatorcontrib><creatorcontrib>Fullerton, Eric E.</creatorcontrib><creatorcontrib>Yu, Paul K. L.</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><title>Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks. Ultrafast and bright green InGaN quantum wells are demonstrated by utilizing nanopatterned Ag–Si multilayer hyperbolic metamaterials. The spontaneous recombination rate is enhanced by more than two orders of magnitude across a broadband of working wavelengths, with over tenfold enhancement in the peak emission intensity. The integration of hyperbolic metamaterials with quantum wells will lead to light‐emitting diodes beyond 100 GHz.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Carrier recombination</subject><subject>Electronic devices</subject><subject>Gallium nitrides</subject><subject>Genetic recombination</subject><subject>Indium gallium nitrides</subject><subject>Light emission</subject><subject>Light emitting diodes</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Modulation</subject><subject>Multilayers</subject><subject>Optoelectronic devices</subject><subject>Organic light emitting diodes</subject><subject>plasmonics</subject><subject>Purcell effect</subject><subject>Quantum wells</subject><subject>Wavelengths</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLJDEUhYM4aOu4dSkBN26qJzdVlVSWbTu2gt3DgOKySOWhJfVo82Dof2-kWwU3s7pw-c7hcA5Cp0CmQAj9JXUvp5QAJ6wA2EMTKClkBRHlPpoQkZeZYEV1iI68fyGECEbYATqkogRKoZwgu5LD6IOLKkTXDk94GbvQdnJjHL7ZrI1rxq5VeGmC7GUwrpWdx3Z0-KELTlrpA5aDxpeufXoOeOGMGfDtsJAr_DfKIcQeP5qu8z_RD5uU5mR3j9HD9e_7-U1292dxO5_dZargAjLdlJwKwYQytuQlEVZTRYkywHOuLbPpawWrNAcQDWdMc94wlUtN8krnVX6MLra-aze-RuND3bdepQRyMGP0dWoKGEDBaULPv6EvY3RDSpcoWlQVMFIkarqllBu9d8bWa9f20m1qIPX7AvX7AvXnAklwtrONTW_0J_5ReQLEFvjXdmbzH7t6drWcfZm_AY9Xkjs</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Lu, Dylan</creator><creator>Qian, Haoliang</creator><creator>Wang, Kangwei</creator><creator>Shen, Hao</creator><creator>Wei, Feifei</creator><creator>Jiang, Yunfeng</creator><creator>Fullerton, Eric E.</creator><creator>Yu, Paul K. L.</creator><creator>Liu, Zhaowei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9238-2063</orcidid></search><sort><creationdate>201804</creationdate><title>Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells</title><author>Lu, Dylan ; Qian, Haoliang ; Wang, Kangwei ; Shen, Hao ; Wei, Feifei ; Jiang, Yunfeng ; Fullerton, Eric E. ; Yu, Paul K. L. ; Liu, Zhaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4791-db5729969cef57509fd2c20ce1737df6ff57f968d7119b766d77b6c3ad038d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Carrier recombination</topic><topic>Electronic devices</topic><topic>Gallium nitrides</topic><topic>Genetic recombination</topic><topic>Indium gallium nitrides</topic><topic>Light emission</topic><topic>Light emitting diodes</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Modulation</topic><topic>Multilayers</topic><topic>Optoelectronic devices</topic><topic>Organic light emitting diodes</topic><topic>plasmonics</topic><topic>Purcell effect</topic><topic>Quantum wells</topic><topic>Wavelengths</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Dylan</creatorcontrib><creatorcontrib>Qian, Haoliang</creatorcontrib><creatorcontrib>Wang, Kangwei</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Wei, Feifei</creatorcontrib><creatorcontrib>Jiang, Yunfeng</creatorcontrib><creatorcontrib>Fullerton, Eric E.</creatorcontrib><creatorcontrib>Yu, Paul K. L.</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Dylan</au><au>Qian, Haoliang</au><au>Wang, Kangwei</au><au>Shen, Hao</au><au>Wei, Feifei</au><au>Jiang, Yunfeng</au><au>Fullerton, Eric E.</au><au>Yu, Paul K. L.</au><au>Liu, Zhaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-04</date><risdate>2018</risdate><volume>30</volume><issue>15</issue><spage>e1706411</spage><epage>n/a</epage><pages>e1706411-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks. Ultrafast and bright green InGaN quantum wells are demonstrated by utilizing nanopatterned Ag–Si multilayer hyperbolic metamaterials. The spontaneous recombination rate is enhanced by more than two orders of magnitude across a broadband of working wavelengths, with over tenfold enhancement in the peak emission intensity. The integration of hyperbolic metamaterials with quantum wells will lead to light‐emitting diodes beyond 100 GHz.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29512215</pmid><doi>10.1002/adma.201706411</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9238-2063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-04, Vol.30 (15), p.e1706411-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2011611472
source Wiley Online Library Journals Frontfile Complete
subjects Bandwidths
Broadband
Carrier recombination
Electronic devices
Gallium nitrides
Genetic recombination
Indium gallium nitrides
Light emission
Light emitting diodes
Materials science
Metamaterials
Modulation
Multilayers
Optoelectronic devices
Organic light emitting diodes
plasmonics
Purcell effect
Quantum wells
Wavelengths
Wireless communications
Wireless networks
title Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructuring%20Multilayer%20Hyperbolic%20Metamaterials%20for%20Ultrafast%20and%20Bright%20Green%20InGaN%20Quantum%20Wells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lu,%20Dylan&rft.date=2018-04&rft.volume=30&rft.issue=15&rft.spage=e1706411&rft.epage=n/a&rft.pages=e1706411-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201706411&rft_dat=%3Cproquest_cross%3E2011611472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024881604&rft_id=info:pmid/29512215&rfr_iscdi=true