Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage
Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance e...
Gespeichert in:
Veröffentlicht in: | Journal of Physics: Condensed Matter 2018-05, Vol.30 (18), p.184002-184002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184002 |
---|---|
container_issue | 18 |
container_start_page | 184002 |
container_title | Journal of Physics: Condensed Matter |
container_volume | 30 |
creator | de Ruiter, Mark V Overeem, Nico J Singhai, Gaurav Cornelissen, Jeroen J L M |
description | Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage. |
doi_str_mv | 10.1088/1361-648X/aab4a9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011611007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403132382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-e7f2c68d6d1e2fd72f2fe3a2ca0afcdc7cc554e4120fabe81d7c61d8f62f88623</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTju6dyUBF7qwnPxVVWojDKOjA4NuFNyFW8lNW0N1UiZVA73zqXwBX8w0PfaoiKvAvd85uYdDyGPOXnKm9QmXDa8apT-fAPQKujtkdRjdJSvW1bLSnVZH5EHOV4wxpaW6T45EV3NRc7ki3y6CWyw6ev7je8ozJpowxwDBIsWAab2lc4KQfdn02zKyMOVlhHmIgUZPX78_rbIF7-PoaA-5OE0p9pjpEPLgkAKdRggzvR7Skm-JGYdALazxIbnnYcz46OY9Jp_O33w8e1ddfnh7cXZ6WVnVybnC1gvbaNc4jsK7VnjhUYKwwMBbZ1tr61qh4oJ56FFz19qGO-0b4bVuhDwmr_a-09Jv0FkMJddopjRsIG1NhMH8uQnDF7OO16blTHVMF4PnNwYpfl0wz2YzZItjSYdxyUYwzhvOGWsL-vQv9CouKZR4RigmuRRS7y5ie8qmmHNCfziGM7Or1-y6NLsuzb7eInnye4iD4FefBXixB4Y43X76H79n_8DtxsiiKLxWjAkzOS9_ArHMwJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403132382</pqid></control><display><type>article</type><title>Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>de Ruiter, Mark V ; Overeem, Nico J ; Singhai, Gaurav ; Cornelissen, Jeroen J L M</creator><creatorcontrib>de Ruiter, Mark V ; Overeem, Nico J ; Singhai, Gaurav ; Cornelissen, Jeroen J L M</creatorcontrib><description>Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>EISSN: 0953-8984</identifier><identifier>DOI: 10.1088/1361-648X/aab4a9</identifier><identifier>PMID: 29512513</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Capsid Proteins - chemistry ; DNA - chemistry ; DNA - metabolism ; Fluorescence Resonance Energy Transfer - methods ; fluorescent cascade ; Fluorescent Dyes - chemistry ; fluorescent probes ; Plant Viruses - metabolism ; self-assembly ; Special Issue on Viral Capsids ; viral genome ; viruses</subject><ispartof>Journal of Physics: Condensed Matter, 2018-05, Vol.30 (18), p.184002-184002</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://ioppublishing.org/news/coronavirus-articles-free-to-access-content-from-iop-publishing</rights><rights>2018 IOP Publishing Ltd 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-e7f2c68d6d1e2fd72f2fe3a2ca0afcdc7cc554e4120fabe81d7c61d8f62f88623</citedby><cites>FETCH-LOGICAL-c493t-e7f2c68d6d1e2fd72f2fe3a2ca0afcdc7cc554e4120fabe81d7c61d8f62f88623</cites><orcidid>0000-0003-0171-3435 ; 0000-0002-9728-5043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aab4a9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29512513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Ruiter, Mark V</creatorcontrib><creatorcontrib>Overeem, Nico J</creatorcontrib><creatorcontrib>Singhai, Gaurav</creatorcontrib><creatorcontrib>Cornelissen, Jeroen J L M</creatorcontrib><title>Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage</title><title>Journal of Physics: Condensed Matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.</description><subject>Capsid Proteins - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>fluorescent cascade</subject><subject>Fluorescent Dyes - chemistry</subject><subject>fluorescent probes</subject><subject>Plant Viruses - metabolism</subject><subject>self-assembly</subject><subject>Special Issue on Viral Capsids</subject><subject>viral genome</subject><subject>viruses</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>0953-8984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoTju6dyUBF7qwnPxVVWojDKOjA4NuFNyFW8lNW0N1UiZVA73zqXwBX8w0PfaoiKvAvd85uYdDyGPOXnKm9QmXDa8apT-fAPQKujtkdRjdJSvW1bLSnVZH5EHOV4wxpaW6T45EV3NRc7ki3y6CWyw6ev7je8ozJpowxwDBIsWAab2lc4KQfdn02zKyMOVlhHmIgUZPX78_rbIF7-PoaA-5OE0p9pjpEPLgkAKdRggzvR7Skm-JGYdALazxIbnnYcz46OY9Jp_O33w8e1ddfnh7cXZ6WVnVybnC1gvbaNc4jsK7VnjhUYKwwMBbZ1tr61qh4oJ56FFz19qGO-0b4bVuhDwmr_a-09Jv0FkMJddopjRsIG1NhMH8uQnDF7OO16blTHVMF4PnNwYpfl0wz2YzZItjSYdxyUYwzhvOGWsL-vQv9CouKZR4RigmuRRS7y5ie8qmmHNCfziGM7Or1-y6NLsuzb7eInnye4iD4FefBXixB4Y43X76H79n_8DtxsiiKLxWjAkzOS9_ArHMwJA</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>de Ruiter, Mark V</creator><creator>Overeem, Nico J</creator><creator>Singhai, Gaurav</creator><creator>Cornelissen, Jeroen J L M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0171-3435</orcidid><orcidid>https://orcid.org/0000-0002-9728-5043</orcidid></search><sort><creationdate>20180510</creationdate><title>Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage</title><author>de Ruiter, Mark V ; Overeem, Nico J ; Singhai, Gaurav ; Cornelissen, Jeroen J L M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-e7f2c68d6d1e2fd72f2fe3a2ca0afcdc7cc554e4120fabe81d7c61d8f62f88623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capsid Proteins - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>fluorescent cascade</topic><topic>Fluorescent Dyes - chemistry</topic><topic>fluorescent probes</topic><topic>Plant Viruses - metabolism</topic><topic>self-assembly</topic><topic>Special Issue on Viral Capsids</topic><topic>viral genome</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Ruiter, Mark V</creatorcontrib><creatorcontrib>Overeem, Nico J</creatorcontrib><creatorcontrib>Singhai, Gaurav</creatorcontrib><creatorcontrib>Cornelissen, Jeroen J L M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Physics: Condensed Matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Ruiter, Mark V</au><au>Overeem, Nico J</au><au>Singhai, Gaurav</au><au>Cornelissen, Jeroen J L M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage</atitle><jtitle>Journal of Physics: Condensed Matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>30</volume><issue>18</issue><spage>184002</spage><epage>184002</epage><pages>184002-184002</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><eissn>0953-8984</eissn><coden>JCOMEL</coden><abstract>Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29512513</pmid><doi>10.1088/1361-648X/aab4a9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0171-3435</orcidid><orcidid>https://orcid.org/0000-0002-9728-5043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of Physics: Condensed Matter, 2018-05, Vol.30 (18), p.184002-184002 |
issn | 0953-8984 1361-648X 0953-8984 |
language | eng |
recordid | cdi_proquest_miscellaneous_2011611007 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Capsid Proteins - chemistry DNA - chemistry DNA - metabolism Fluorescence Resonance Energy Transfer - methods fluorescent cascade Fluorescent Dyes - chemistry fluorescent probes Plant Viruses - metabolism self-assembly Special Issue on Viral Capsids viral genome viruses |
title | Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20F%C3%B6rster%20resonance%20energy%20transfer%20by%20encapsulation%20of%20DNA-scaffold%20based%20probes%20inside%20a%20plant%20virus%20based%20protein%20cage&rft.jtitle=Journal%20of%20Physics:%20Condensed%20Matter&rft.au=de%20Ruiter,%20Mark%20V&rft.date=2018-05-10&rft.volume=30&rft.issue=18&rft.spage=184002&rft.epage=184002&rft.pages=184002-184002&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aab4a9&rft_dat=%3Cproquest_pubme%3E2403132382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403132382&rft_id=info:pmid/29512513&rfr_iscdi=true |