Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining

There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their rele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2018-04, Vol.17 (4), p.1383-1396
Hauptverfasser: Yu, Kun-Hsing, Lee, Tsung-Lu Michael, Wang, Chi-Shiang, Chen, Yu-Ju, Ré, Christopher, Kou, Samuel C, Chiang, Jung-Hsien, Kohane, Isaac S, Snyder, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 4
container_start_page 1383
container_title Journal of proteome research
container_volume 17
creator Yu, Kun-Hsing
Lee, Tsung-Lu Michael
Wang, Chi-Shiang
Chen, Yu-Ju
Ré, Christopher
Kou, Samuel C
Chiang, Jung-Hsien
Kohane, Isaac S
Snyder, Michael
description There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.
doi_str_mv 10.1021/acs.jproteome.7b00772
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011274764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011274764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EolD4CaCMLCn-iO1mRBVfUhFILRND5DgvrasmLrYzlF-PS9quTM-2zr1PPgjdEDwimJJ7pf1otXE2gG1gJEuMpaQn6IJwxlOWY3l6OI9zNkCX3q8wJlxido4GNOeYUyEu0Nds6wM0KhidfOzaTBunsc4E8xNfbZvU1iVz5RYQoOoZ2xjtk1noKgM-CUtnu8UymZoAToXOQfJmWtMurtBZrdYervdziD6fHueTl3T6_vw6eZiminESUq1zpghILmRZA6N1XY-1qDjRklEudDnORIXLeM3zrBQCMk6qnBCleF6NCWVDdNf3Rh3fHfhQNMZrWK9VC7bzBcWEUJlJkUWU96h21nsHdbFxplFuWxBc7LwW0Wtx9Frsvcbc7X5FVzZQHVMHkREgPfCXt51r44__Kf0FHMKKqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011274764</pqid></control><display><type>article</type><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</creator><creatorcontrib>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</creatorcontrib><description>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.7b00772</identifier><identifier>PMID: 29505266</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Computational Biology - methods ; Human Genome Project ; Humans ; Precision Medicine - methods ; Proteomics - methods ; Search Engine</subject><ispartof>Journal of proteome research, 2018-04, Vol.17 (4), p.1383-1396</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</citedby><cites>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</cites><orcidid>0000-0002-3178-6697 ; 0000-0001-9892-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.7b00772$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.7b00772$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29505266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Lee, Tsung-Lu Michael</creatorcontrib><creatorcontrib>Wang, Chi-Shiang</creatorcontrib><creatorcontrib>Chen, Yu-Ju</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Kou, Samuel C</creatorcontrib><creatorcontrib>Chiang, Jung-Hsien</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</description><subject>Animals</subject><subject>Computational Biology - methods</subject><subject>Human Genome Project</subject><subject>Humans</subject><subject>Precision Medicine - methods</subject><subject>Proteomics - methods</subject><subject>Search Engine</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAURS0EolD4CaCMLCn-iO1mRBVfUhFILRND5DgvrasmLrYzlF-PS9quTM-2zr1PPgjdEDwimJJ7pf1otXE2gG1gJEuMpaQn6IJwxlOWY3l6OI9zNkCX3q8wJlxido4GNOeYUyEu0Nds6wM0KhidfOzaTBunsc4E8xNfbZvU1iVz5RYQoOoZ2xjtk1noKgM-CUtnu8UymZoAToXOQfJmWtMurtBZrdYervdziD6fHueTl3T6_vw6eZiminESUq1zpghILmRZA6N1XY-1qDjRklEudDnORIXLeM3zrBQCMk6qnBCleF6NCWVDdNf3Rh3fHfhQNMZrWK9VC7bzBcWEUJlJkUWU96h21nsHdbFxplFuWxBc7LwW0Wtx9Frsvcbc7X5FVzZQHVMHkREgPfCXt51r44__Kf0FHMKKqw</recordid><startdate>20180406</startdate><enddate>20180406</enddate><creator>Yu, Kun-Hsing</creator><creator>Lee, Tsung-Lu Michael</creator><creator>Wang, Chi-Shiang</creator><creator>Chen, Yu-Ju</creator><creator>Ré, Christopher</creator><creator>Kou, Samuel C</creator><creator>Chiang, Jung-Hsien</creator><creator>Kohane, Isaac S</creator><creator>Snyder, Michael</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3178-6697</orcidid><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></search><sort><creationdate>20180406</creationdate><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><author>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Computational Biology - methods</topic><topic>Human Genome Project</topic><topic>Humans</topic><topic>Precision Medicine - methods</topic><topic>Proteomics - methods</topic><topic>Search Engine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Lee, Tsung-Lu Michael</creatorcontrib><creatorcontrib>Wang, Chi-Shiang</creatorcontrib><creatorcontrib>Chen, Yu-Ju</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Kou, Samuel C</creatorcontrib><creatorcontrib>Chiang, Jung-Hsien</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kun-Hsing</au><au>Lee, Tsung-Lu Michael</au><au>Wang, Chi-Shiang</au><au>Chen, Yu-Ju</au><au>Ré, Christopher</au><au>Kou, Samuel C</au><au>Chiang, Jung-Hsien</au><au>Kohane, Isaac S</au><au>Snyder, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2018-04-06</date><risdate>2018</risdate><volume>17</volume><issue>4</issue><spage>1383</spage><epage>1396</epage><pages>1383-1396</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29505266</pmid><doi>10.1021/acs.jproteome.7b00772</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3178-6697</orcidid><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2018-04, Vol.17 (4), p.1383-1396
issn 1535-3893
1535-3907
language eng
recordid cdi_proquest_miscellaneous_2011274764
source MEDLINE; American Chemical Society Journals
subjects Animals
Computational Biology - methods
Human Genome Project
Humans
Precision Medicine - methods
Proteomics - methods
Search Engine
title Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Protein%20Prioritization%20for%20Targeted%20Proteomics%20Studies%20through%20Literature%20Mining&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Yu,%20Kun-Hsing&rft.date=2018-04-06&rft.volume=17&rft.issue=4&rft.spage=1383&rft.epage=1396&rft.pages=1383-1396&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.7b00772&rft_dat=%3Cproquest_cross%3E2011274764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011274764&rft_id=info:pmid/29505266&rfr_iscdi=true