Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining
There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their rele...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2018-04, Vol.17 (4), p.1383-1396 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1396 |
---|---|
container_issue | 4 |
container_start_page | 1383 |
container_title | Journal of proteome research |
container_volume | 17 |
creator | Yu, Kun-Hsing Lee, Tsung-Lu Michael Wang, Chi-Shiang Chen, Yu-Ju Ré, Christopher Kou, Samuel C Chiang, Jung-Hsien Kohane, Isaac S Snyder, Michael |
description | There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine. |
doi_str_mv | 10.1021/acs.jproteome.7b00772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2011274764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011274764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EolD4CaCMLCn-iO1mRBVfUhFILRND5DgvrasmLrYzlF-PS9quTM-2zr1PPgjdEDwimJJ7pf1otXE2gG1gJEuMpaQn6IJwxlOWY3l6OI9zNkCX3q8wJlxido4GNOeYUyEu0Nds6wM0KhidfOzaTBunsc4E8xNfbZvU1iVz5RYQoOoZ2xjtk1noKgM-CUtnu8UymZoAToXOQfJmWtMurtBZrdYervdziD6fHueTl3T6_vw6eZiminESUq1zpghILmRZA6N1XY-1qDjRklEudDnORIXLeM3zrBQCMk6qnBCleF6NCWVDdNf3Rh3fHfhQNMZrWK9VC7bzBcWEUJlJkUWU96h21nsHdbFxplFuWxBc7LwW0Wtx9Frsvcbc7X5FVzZQHVMHkREgPfCXt51r44__Kf0FHMKKqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011274764</pqid></control><display><type>article</type><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</creator><creatorcontrib>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</creatorcontrib><description>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.7b00772</identifier><identifier>PMID: 29505266</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Computational Biology - methods ; Human Genome Project ; Humans ; Precision Medicine - methods ; Proteomics - methods ; Search Engine</subject><ispartof>Journal of proteome research, 2018-04, Vol.17 (4), p.1383-1396</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</citedby><cites>FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</cites><orcidid>0000-0002-3178-6697 ; 0000-0001-9892-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.7b00772$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.7b00772$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29505266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Lee, Tsung-Lu Michael</creatorcontrib><creatorcontrib>Wang, Chi-Shiang</creatorcontrib><creatorcontrib>Chen, Yu-Ju</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Kou, Samuel C</creatorcontrib><creatorcontrib>Chiang, Jung-Hsien</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</description><subject>Animals</subject><subject>Computational Biology - methods</subject><subject>Human Genome Project</subject><subject>Humans</subject><subject>Precision Medicine - methods</subject><subject>Proteomics - methods</subject><subject>Search Engine</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAURS0EolD4CaCMLCn-iO1mRBVfUhFILRND5DgvrasmLrYzlF-PS9quTM-2zr1PPgjdEDwimJJ7pf1otXE2gG1gJEuMpaQn6IJwxlOWY3l6OI9zNkCX3q8wJlxido4GNOeYUyEu0Nds6wM0KhidfOzaTBunsc4E8xNfbZvU1iVz5RYQoOoZ2xjtk1noKgM-CUtnu8UymZoAToXOQfJmWtMurtBZrdYervdziD6fHueTl3T6_vw6eZiminESUq1zpghILmRZA6N1XY-1qDjRklEudDnORIXLeM3zrBQCMk6qnBCleF6NCWVDdNf3Rh3fHfhQNMZrWK9VC7bzBcWEUJlJkUWU96h21nsHdbFxplFuWxBc7LwW0Wtx9Frsvcbc7X5FVzZQHVMHkREgPfCXt51r44__Kf0FHMKKqw</recordid><startdate>20180406</startdate><enddate>20180406</enddate><creator>Yu, Kun-Hsing</creator><creator>Lee, Tsung-Lu Michael</creator><creator>Wang, Chi-Shiang</creator><creator>Chen, Yu-Ju</creator><creator>Ré, Christopher</creator><creator>Kou, Samuel C</creator><creator>Chiang, Jung-Hsien</creator><creator>Kohane, Isaac S</creator><creator>Snyder, Michael</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3178-6697</orcidid><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></search><sort><creationdate>20180406</creationdate><title>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</title><author>Yu, Kun-Hsing ; Lee, Tsung-Lu Michael ; Wang, Chi-Shiang ; Chen, Yu-Ju ; Ré, Christopher ; Kou, Samuel C ; Chiang, Jung-Hsien ; Kohane, Isaac S ; Snyder, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-cc93a1e7567bfe32fff8c6d51c73256cb846d0b1c7994b66e451d911aa59d8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Computational Biology - methods</topic><topic>Human Genome Project</topic><topic>Humans</topic><topic>Precision Medicine - methods</topic><topic>Proteomics - methods</topic><topic>Search Engine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Lee, Tsung-Lu Michael</creatorcontrib><creatorcontrib>Wang, Chi-Shiang</creatorcontrib><creatorcontrib>Chen, Yu-Ju</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Kou, Samuel C</creatorcontrib><creatorcontrib>Chiang, Jung-Hsien</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kun-Hsing</au><au>Lee, Tsung-Lu Michael</au><au>Wang, Chi-Shiang</au><au>Chen, Yu-Ju</au><au>Ré, Christopher</au><au>Kou, Samuel C</au><au>Chiang, Jung-Hsien</au><au>Kohane, Isaac S</au><au>Snyder, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2018-04-06</date><risdate>2018</risdate><volume>17</volume><issue>4</issue><spage>1383</spage><epage>1396</epage><pages>1383-1396</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>There are more than 3.7 million published articles on the biological functions or disease implications of proteins, constituting an important resource of proteomics knowledge. However, it is difficult to summarize the millions of proteomics findings in the literature manually and quantify their relevance to the biology and diseases of interest. We developed a fully automated bioinformatics framework to identify and prioritize proteins associated with any biological entity. We used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome Project (HPP) as examples, prioritized the relevant proteins through their Protein Universal Reference Publication-Originated Search Engine (PURPOSE) scores, validated the relevance of the score by comparing the protein prioritization results with a curated database, computed the scores of proteins across the topics of B/D-HPP, and characterized the top proteins in the common model organisms. We further extended the bioinformatics workflow to identify the relevant proteins in all organ systems and human diseases and deployed a cloud-based tool to prioritize proteins related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29505266</pmid><doi>10.1021/acs.jproteome.7b00772</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3178-6697</orcidid><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2018-04, Vol.17 (4), p.1383-1396 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_2011274764 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Computational Biology - methods Human Genome Project Humans Precision Medicine - methods Proteomics - methods Search Engine |
title | Systematic Protein Prioritization for Targeted Proteomics Studies through Literature Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Protein%20Prioritization%20for%20Targeted%20Proteomics%20Studies%20through%20Literature%20Mining&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Yu,%20Kun-Hsing&rft.date=2018-04-06&rft.volume=17&rft.issue=4&rft.spage=1383&rft.epage=1396&rft.pages=1383-1396&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.7b00772&rft_dat=%3Cproquest_cross%3E2011274764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011274764&rft_id=info:pmid/29505266&rfr_iscdi=true |