Thermal stability of iron-sulfur clusters
The thermal decomposition of free cationic iron-sulfur clusters Fe x S y + ( x = 0-7, y = 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric Fe x S y + ( y = x ) or near stoichiome...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018, Vol.2 (11), p.7781-779 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 11 |
container_start_page | 7781 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Lang, Sandra M Miyajima, Ken Bernhardt, Thorsten M Mafuné, Fumitaka Barnett, Robert N Landman, Uzi |
description | The thermal decomposition of free cationic iron-sulfur clusters Fe
x
S
y
+
(
x
= 0-7,
y
= 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric Fe
x
S
y
+
(
y
=
x
) or near stoichiometric Fe
x
S
y
+
(
y
=
x
± 1) clusters is observed. In particular, Fe
4
S
4
+
represents the most abundant product up to 600 K, Fe
3
S
3
+
and Fe
3
S
2
+
are preferably formed between 600 K and 800 K, and Fe
2
S
2
+
clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe
2
S
2
+
. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O
2
molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable Fe
x
O
y
+
clusters at high temperatures.
Fe
x
S
y
+
clusters thermally decompose
via
a complex fragmentation mechanism with the preferred formation of stoichiometric Fe
x
S
x
+
. |
doi_str_mv | 10.1039/c8cp00515j |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2010839952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013706426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-451969f8fb0c9d9c7e49e29887d91eedb4e93c7236a968178900986864411fe43</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agirs-Lt6VqhcVqpMmTTNHKT5Z0MN6Dm2asl36MmkP--3t2nUFD55mYH4MzH8IOaFwS4HhnZa6BQhpuNwhU8oF8xEk3932kZiQA-eWAEBDyvbJJMAQOEA0JdfzhbFVUnquS9KiLLqV1-ReYZvad32Z99bTZe86Y90R2cuT0pnjTT0kH48P8_jZn709vcT3M19zZJ3PQ4oCc5mnoDFDHRmOJkApowypMVnKDTIdBUwkKCSNJAKgFFJwTmluODskF-PexnWFcrrojF7opq6N7hQNGSLKAV2NqLXNZ29cp6rCaVOWSW2a3qkAKMiBhsFAL__QZdPbejhhrVgEggdiUDej0rZxzppctbaoErtSFNQ6ZRXL-P075dcBn21W9mllsi39iXUA5yOwTm-nv29SbZYP5vQ_w74AJ9GJGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013706426</pqid></control><display><type>article</type><title>Thermal stability of iron-sulfur clusters</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lang, Sandra M ; Miyajima, Ken ; Bernhardt, Thorsten M ; Mafuné, Fumitaka ; Barnett, Robert N ; Landman, Uzi</creator><creatorcontrib>Lang, Sandra M ; Miyajima, Ken ; Bernhardt, Thorsten M ; Mafuné, Fumitaka ; Barnett, Robert N ; Landman, Uzi ; Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><description>The thermal decomposition of free cationic iron-sulfur clusters Fe
x
S
y
+
(
x
= 0-7,
y
= 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric Fe
x
S
y
+
(
y
=
x
) or near stoichiometric Fe
x
S
y
+
(
y
=
x
± 1) clusters is observed. In particular, Fe
4
S
4
+
represents the most abundant product up to 600 K, Fe
3
S
3
+
and Fe
3
S
2
+
are preferably formed between 600 K and 800 K, and Fe
2
S
2
+
clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe
2
S
2
+
. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O
2
molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable Fe
x
O
y
+
clusters at high temperatures.
Fe
x
S
y
+
clusters thermally decompose
via
a complex fragmentation mechanism with the preferred formation of stoichiometric Fe
x
S
x
+
.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp00515j</identifier><identifier>PMID: 29504007</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Clusters ; First principles ; Fragmentation ; Iron ; Isomerization ; Physics ; Sulfur ; Temperature dependence ; Thermal decomposition ; Thermal dissociation ; Thermal stability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (11), p.7781-779</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-451969f8fb0c9d9c7e49e29887d91eedb4e93c7236a968178900986864411fe43</citedby><cites>FETCH-LOGICAL-c493t-451969f8fb0c9d9c7e49e29887d91eedb4e93c7236a968178900986864411fe43</cites><orcidid>0000-0002-5385-8911 ; 0000-0001-7851-0850 ; 0000-0001-8860-6354 ; 0000-0002-1586-1554 ; 0000000178510850 ; 0000000188606354 ; 0000000253858911 ; 0000000215861554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29504007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Sandra M</creatorcontrib><creatorcontrib>Miyajima, Ken</creatorcontrib><creatorcontrib>Bernhardt, Thorsten M</creatorcontrib><creatorcontrib>Mafuné, Fumitaka</creatorcontrib><creatorcontrib>Barnett, Robert N</creatorcontrib><creatorcontrib>Landman, Uzi</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><title>Thermal stability of iron-sulfur clusters</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The thermal decomposition of free cationic iron-sulfur clusters Fe
x
S
y
+
(
x
= 0-7,
y
= 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric Fe
x
S
y
+
(
y
=
x
) or near stoichiometric Fe
x
S
y
+
(
y
=
x
± 1) clusters is observed. In particular, Fe
4
S
4
+
represents the most abundant product up to 600 K, Fe
3
S
3
+
and Fe
3
S
2
+
are preferably formed between 600 K and 800 K, and Fe
2
S
2
+
clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe
2
S
2
+
. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O
2
molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable Fe
x
O
y
+
clusters at high temperatures.
Fe
x
S
y
+
clusters thermally decompose
via
a complex fragmentation mechanism with the preferred formation of stoichiometric Fe
x
S
x
+
.</description><subject>Chemistry</subject><subject>Clusters</subject><subject>First principles</subject><subject>Fragmentation</subject><subject>Iron</subject><subject>Isomerization</subject><subject>Physics</subject><subject>Sulfur</subject><subject>Temperature dependence</subject><subject>Thermal decomposition</subject><subject>Thermal dissociation</subject><subject>Thermal stability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_Agirs-Lt6VqhcVqpMmTTNHKT5Z0MN6Dm2asl36MmkP--3t2nUFD55mYH4MzH8IOaFwS4HhnZa6BQhpuNwhU8oF8xEk3932kZiQA-eWAEBDyvbJJMAQOEA0JdfzhbFVUnquS9KiLLqV1-ReYZvad32Z99bTZe86Y90R2cuT0pnjTT0kH48P8_jZn709vcT3M19zZJ3PQ4oCc5mnoDFDHRmOJkApowypMVnKDTIdBUwkKCSNJAKgFFJwTmluODskF-PexnWFcrrojF7opq6N7hQNGSLKAV2NqLXNZ29cp6rCaVOWSW2a3qkAKMiBhsFAL__QZdPbejhhrVgEggdiUDej0rZxzppctbaoErtSFNQ6ZRXL-P075dcBn21W9mllsi39iXUA5yOwTm-nv29SbZYP5vQ_w74AJ9GJGQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Lang, Sandra M</creator><creator>Miyajima, Ken</creator><creator>Bernhardt, Thorsten M</creator><creator>Mafuné, Fumitaka</creator><creator>Barnett, Robert N</creator><creator>Landman, Uzi</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5385-8911</orcidid><orcidid>https://orcid.org/0000-0001-7851-0850</orcidid><orcidid>https://orcid.org/0000-0001-8860-6354</orcidid><orcidid>https://orcid.org/0000-0002-1586-1554</orcidid><orcidid>https://orcid.org/0000000178510850</orcidid><orcidid>https://orcid.org/0000000188606354</orcidid><orcidid>https://orcid.org/0000000253858911</orcidid><orcidid>https://orcid.org/0000000215861554</orcidid></search><sort><creationdate>2018</creationdate><title>Thermal stability of iron-sulfur clusters</title><author>Lang, Sandra M ; Miyajima, Ken ; Bernhardt, Thorsten M ; Mafuné, Fumitaka ; Barnett, Robert N ; Landman, Uzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-451969f8fb0c9d9c7e49e29887d91eedb4e93c7236a968178900986864411fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Clusters</topic><topic>First principles</topic><topic>Fragmentation</topic><topic>Iron</topic><topic>Isomerization</topic><topic>Physics</topic><topic>Sulfur</topic><topic>Temperature dependence</topic><topic>Thermal decomposition</topic><topic>Thermal dissociation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Sandra M</creatorcontrib><creatorcontrib>Miyajima, Ken</creatorcontrib><creatorcontrib>Bernhardt, Thorsten M</creatorcontrib><creatorcontrib>Mafuné, Fumitaka</creatorcontrib><creatorcontrib>Barnett, Robert N</creatorcontrib><creatorcontrib>Landman, Uzi</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Sandra M</au><au>Miyajima, Ken</au><au>Bernhardt, Thorsten M</au><au>Mafuné, Fumitaka</au><au>Barnett, Robert N</au><au>Landman, Uzi</au><aucorp>Georgia Inst. of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of iron-sulfur clusters</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><spage>7781</spage><epage>779</epage><pages>7781-779</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The thermal decomposition of free cationic iron-sulfur clusters Fe
x
S
y
+
(
x
= 0-7,
y
= 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric Fe
x
S
y
+
(
y
=
x
) or near stoichiometric Fe
x
S
y
+
(
y
=
x
± 1) clusters is observed. In particular, Fe
4
S
4
+
represents the most abundant product up to 600 K, Fe
3
S
3
+
and Fe
3
S
2
+
are preferably formed between 600 K and 800 K, and Fe
2
S
2
+
clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe
2
S
2
+
. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O
2
molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable Fe
x
O
y
+
clusters at high temperatures.
Fe
x
S
y
+
clusters thermally decompose
via
a complex fragmentation mechanism with the preferred formation of stoichiometric Fe
x
S
x
+
.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29504007</pmid><doi>10.1039/c8cp00515j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5385-8911</orcidid><orcidid>https://orcid.org/0000-0001-7851-0850</orcidid><orcidid>https://orcid.org/0000-0001-8860-6354</orcidid><orcidid>https://orcid.org/0000-0002-1586-1554</orcidid><orcidid>https://orcid.org/0000000178510850</orcidid><orcidid>https://orcid.org/0000000188606354</orcidid><orcidid>https://orcid.org/0000000253858911</orcidid><orcidid>https://orcid.org/0000000215861554</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018, Vol.2 (11), p.7781-779 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2010839952 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemistry Clusters First principles Fragmentation Iron Isomerization Physics Sulfur Temperature dependence Thermal decomposition Thermal dissociation Thermal stability |
title | Thermal stability of iron-sulfur clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20iron-sulfur%20clusters&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Lang,%20Sandra%20M&rft.aucorp=Georgia%20Inst.%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2018&rft.volume=2&rft.issue=11&rft.spage=7781&rft.epage=779&rft.pages=7781-779&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp00515j&rft_dat=%3Cproquest_osti_%3E2013706426%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013706426&rft_id=info:pmid/29504007&rfr_iscdi=true |