Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids

A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel–elastomer hybrid as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-03, Vol.12 (3), p.2818-2826
Hauptverfasser: Liu, Ting, Liu, Mengmeng, Dou, Su, Sun, Jiangman, Cong, Zifeng, Jiang, Chunyan, Du, Chunhua, Pu, Xiong, Hu, Weiguo, Wang, Zhong Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 3
container_start_page 2818
container_title ACS nano
container_volume 12
creator Liu, Ting
Liu, Mengmeng
Dou, Su
Sun, Jiangman
Cong, Zifeng
Jiang, Chunyan
Du, Chunhua
Pu, Xiong
Hu, Weiguo
Wang, Zhong Lin
description A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel–elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.
doi_str_mv 10.1021/acsnano.8b00108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2010370641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010370641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-8b2080a1dd79f85540d057e502e3a5d810af27e904f43f733ef1cd692c91ec8f3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7P3qRHQbol_Zkc3ZhWGHrYBG8lbb7UzrSZSSv0vzey6s1TwsvzvXzfg9A1wXOCA7LgpW15q-e0wJhgeoKmhIWJj2nydvr3j8kEXVi7xzhOaZqco0nAIhaRIJ0iszN1oUFB2Zm69J9dWQUtGN5p4y-5BeFttey8tcuqwc-4-QLb1W3lbT_q1sW8UI4pBm-n--pdDd5St8Ila8Vtpxswi2wQxpUqLxsKUwt7ic4kVxauxneGXh_Wu1Xmb14en1b3G5-HjHU-LQJMMSdCpEzSOI6wcPtDjAMIeSwowVwGKTAcySiUaRiCJKVIWFAyAiWV4QzdHnsPRn_2buu8qW0JSvEWdG_zwBkLU5xExKGLI1oaba0BmR9M3XAz5ATnP6LzUXQ-inYTN2N5XzQg_vhfsw64OwJuMt_r3rTu1n_rvgEnVIqx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010370641</pqid></control><display><type>article</type><title>Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids</title><source>ACS Publications</source><creator>Liu, Ting ; Liu, Mengmeng ; Dou, Su ; Sun, Jiangman ; Cong, Zifeng ; Jiang, Chunyan ; Du, Chunhua ; Pu, Xiong ; Hu, Weiguo ; Wang, Zhong Lin</creator><creatorcontrib>Liu, Ting ; Liu, Mengmeng ; Dou, Su ; Sun, Jiangman ; Cong, Zifeng ; Jiang, Chunyan ; Du, Chunhua ; Pu, Xiong ; Hu, Weiguo ; Wang, Zhong Lin</creatorcontrib><description>A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel–elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00108</identifier><identifier>PMID: 29494127</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-03, Vol.12 (3), p.2818-2826</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-8b2080a1dd79f85540d057e502e3a5d810af27e904f43f733ef1cd692c91ec8f3</citedby><cites>FETCH-LOGICAL-a399t-8b2080a1dd79f85540d057e502e3a5d810af27e904f43f733ef1cd692c91ec8f3</cites><orcidid>0000-0002-8614-0359 ; 0000-0002-1254-8503 ; 0000-0002-5530-0380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b00108$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b00108$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29494127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Mengmeng</creatorcontrib><creatorcontrib>Dou, Su</creatorcontrib><creatorcontrib>Sun, Jiangman</creatorcontrib><creatorcontrib>Cong, Zifeng</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Du, Chunhua</creatorcontrib><creatorcontrib>Pu, Xiong</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><title>Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel–elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7P3qRHQbol_Zkc3ZhWGHrYBG8lbb7UzrSZSSv0vzey6s1TwsvzvXzfg9A1wXOCA7LgpW15q-e0wJhgeoKmhIWJj2nydvr3j8kEXVi7xzhOaZqco0nAIhaRIJ0iszN1oUFB2Zm69J9dWQUtGN5p4y-5BeFttey8tcuqwc-4-QLb1W3lbT_q1sW8UI4pBm-n--pdDd5St8Ila8Vtpxswi2wQxpUqLxsKUwt7ic4kVxauxneGXh_Wu1Xmb14en1b3G5-HjHU-LQJMMSdCpEzSOI6wcPtDjAMIeSwowVwGKTAcySiUaRiCJKVIWFAyAiWV4QzdHnsPRn_2buu8qW0JSvEWdG_zwBkLU5xExKGLI1oaba0BmR9M3XAz5ATnP6LzUXQ-inYTN2N5XzQg_vhfsw64OwJuMt_r3rTu1n_rvgEnVIqx</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Liu, Ting</creator><creator>Liu, Mengmeng</creator><creator>Dou, Su</creator><creator>Sun, Jiangman</creator><creator>Cong, Zifeng</creator><creator>Jiang, Chunyan</creator><creator>Du, Chunhua</creator><creator>Pu, Xiong</creator><creator>Hu, Weiguo</creator><creator>Wang, Zhong Lin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid><orcidid>https://orcid.org/0000-0002-1254-8503</orcidid><orcidid>https://orcid.org/0000-0002-5530-0380</orcidid></search><sort><creationdate>20180327</creationdate><title>Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids</title><author>Liu, Ting ; Liu, Mengmeng ; Dou, Su ; Sun, Jiangman ; Cong, Zifeng ; Jiang, Chunyan ; Du, Chunhua ; Pu, Xiong ; Hu, Weiguo ; Wang, Zhong Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-8b2080a1dd79f85540d057e502e3a5d810af27e904f43f733ef1cd692c91ec8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Mengmeng</creatorcontrib><creatorcontrib>Dou, Su</creatorcontrib><creatorcontrib>Sun, Jiangman</creatorcontrib><creatorcontrib>Cong, Zifeng</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Du, Chunhua</creatorcontrib><creatorcontrib>Pu, Xiong</creatorcontrib><creatorcontrib>Hu, Weiguo</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Liu, Mengmeng</au><au>Dou, Su</au><au>Sun, Jiangman</au><au>Cong, Zifeng</au><au>Jiang, Chunyan</au><au>Du, Chunhua</au><au>Pu, Xiong</au><au>Hu, Weiguo</au><au>Wang, Zhong Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>12</volume><issue>3</issue><spage>2818</spage><epage>2826</epage><pages>2818-2826</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel–elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29494127</pmid><doi>10.1021/acsnano.8b00108</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8614-0359</orcidid><orcidid>https://orcid.org/0000-0002-1254-8503</orcidid><orcidid>https://orcid.org/0000-0002-5530-0380</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-03, Vol.12 (3), p.2818-2826
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2010370641
source ACS Publications
title Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triboelectric-Nanogenerator-Based%20Soft%20Energy-Harvesting%20Skin%20Enabled%20by%20Toughly%20Bonded%20Elastomer/Hydrogel%20Hybrids&rft.jtitle=ACS%20nano&rft.au=Liu,%20Ting&rft.date=2018-03-27&rft.volume=12&rft.issue=3&rft.spage=2818&rft.epage=2826&rft.pages=2818-2826&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00108&rft_dat=%3Cproquest_cross%3E2010370641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010370641&rft_id=info:pmid/29494127&rfr_iscdi=true