Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor

Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical & pharmaceutical bulletin 2018/03/01, Vol.66(3), pp.243-250
Hauptverfasser: Kadoh, Yoichi, Miyoshi, Haruko, Matsumura, Takehiko, Tanaka, Yoshihito, Hongu, Mitsuya, Kimura, Mayumi, Takedomi, Kei, Omori, Kenji, Kotera, Jun, Sasaki, Takashi, Kobayashi, Tamaki, Taniguchi, Hiroyuki, Watanabe, Yumi, Kojima, Koki, Sakamoto, Toshiaki, Himiyama, Toshiyuki, Kawanishi, Eiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 243
container_title Chemical & pharmaceutical bulletin
container_volume 66
creator Kadoh, Yoichi
Miyoshi, Haruko
Matsumura, Takehiko
Tanaka, Yoshihito
Hongu, Mitsuya
Kimura, Mayumi
Takedomi, Kei
Omori, Kenji
Kotera, Jun
Sasaki, Takashi
Kobayashi, Tamaki
Taniguchi, Hiroyuki
Watanabe, Yumi
Kojima, Koki
Sakamoto, Toshiaki
Himiyama, Toshiyuki
Kawanishi, Eiji
description Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptoms. Therefore PDE10A inhibitor is expected as a therapeutic method for psychosis disease such as schizophrenia. Avanafil (1) is a PDE5 inhibitor (treatment for erectile dysfunction) discovered by our company. We paid attention to the homology of PDE10A and PDE5 and took advantage of PDE5 inhibitor library to discover PDE10A inhibitors, and found a series of compounds that exhibit higher potency for PDE10A than PDE5. We transformed the afforded derivatives, which had weak inhibitory activity against PDE10A, and discovered stilbene as a PDE10A inhibitor. Brain penetration of this compound was improved by further conversion of N-containing heterocycles and their substituents. The afforded dimethylaminopyrimidine was effective for rat conditioned avoidance response (CAR) test; however, it did not exhibit good brain penetration. We performed in-depth optimization focusing on substituents of the quinoxaline ring, and produced 3-methyl-7-fluoro quinoxaline. This compound was the most effective in rat CAR test due to its strong PDE10A inhibitory activity and good pharmacokinetics.
doi_str_mv 10.1248/cpb.c17-00783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2009566226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009566226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c702t-e15422994d4faa9dc536211930440ce0fc548a6d9890796451103e80f7b30c123</originalsourceid><addsrcrecordid>eNpdkl9v0zAUxSMEYmXwyCuKxEv34OF_sZPHqevWSRMgAU8IWa7jLK7cuLOTinwuviA37egkXmxL5-d7j-9xlr0n-JJQXn4yu_WlIRJhLEv2IpsRxiUqKGUvsxnGuEKUCXaWvUlpgzEtsGSvszNa8YrQopxlf65dMmFv45iHJqfo53x5gSiaS3TjhxADYmhr-3b0j4Prwm_tXQfy6C_2rhv9LyTQbowxeFeDQEBAn9G8t33U7VjDdbqaAN0hPl2Co9seUI701nU2X02UaX2Irra5TrnOV-6h9WP-zXprere3-dfrJcFX-V3XurXrQ3ybvWq0T_bd036e_bhZfl-s0P2X27vF1T0yEtMeWVJwSquK17zRuqpNwQQlpGKYc2wsbkzBSy3qqqywrAQvCMHMlriRa4YNoew8mx_r7mJ4HGzq1RaGZb3XnQ1DUhTGWwhBqQD043_oJgyxA3cKoiClxAIzoNCRMjGkFG2jdjAPHUdFsJrSVJCmgjTVIU3gPzxVHdZbW5_of_EBcHsEQHVG-9BBPva5t0nStHbrwCopoagAF7BVClMOB_gODDMp-fTWxbHSJvX6wZ5a6dg74-3BmBCKTcvJ4LPa6qhsx_4CRorGhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231870603</pqid></control><display><type>article</type><title>Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor</title><source>J-STAGE Free</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kadoh, Yoichi ; Miyoshi, Haruko ; Matsumura, Takehiko ; Tanaka, Yoshihito ; Hongu, Mitsuya ; Kimura, Mayumi ; Takedomi, Kei ; Omori, Kenji ; Kotera, Jun ; Sasaki, Takashi ; Kobayashi, Tamaki ; Taniguchi, Hiroyuki ; Watanabe, Yumi ; Kojima, Koki ; Sakamoto, Toshiaki ; Himiyama, Toshiyuki ; Kawanishi, Eiji</creator><creatorcontrib>Kadoh, Yoichi ; Miyoshi, Haruko ; Matsumura, Takehiko ; Tanaka, Yoshihito ; Hongu, Mitsuya ; Kimura, Mayumi ; Takedomi, Kei ; Omori, Kenji ; Kotera, Jun ; Sasaki, Takashi ; Kobayashi, Tamaki ; Taniguchi, Hiroyuki ; Watanabe, Yumi ; Kojima, Koki ; Sakamoto, Toshiaki ; Himiyama, Toshiyuki ; Kawanishi, Eiji ; Nagoya University ; Laboratory of Target and Drug Discovery ; bMitsubishi Tanabe Pharma Corporation ; aMitsubishi Tanabe Pharma Corporation ; Graduate School of Pharmaceutical Sciences ; cIndustry and Academia Cooperation Research Project</creatorcontrib><description>Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptoms. Therefore PDE10A inhibitor is expected as a therapeutic method for psychosis disease such as schizophrenia. Avanafil (1) is a PDE5 inhibitor (treatment for erectile dysfunction) discovered by our company. We paid attention to the homology of PDE10A and PDE5 and took advantage of PDE5 inhibitor library to discover PDE10A inhibitors, and found a series of compounds that exhibit higher potency for PDE10A than PDE5. We transformed the afforded derivatives, which had weak inhibitory activity against PDE10A, and discovered stilbene as a PDE10A inhibitor. Brain penetration of this compound was improved by further conversion of N-containing heterocycles and their substituents. The afforded dimethylaminopyrimidine was effective for rat conditioned avoidance response (CAR) test; however, it did not exhibit good brain penetration. We performed in-depth optimization focusing on substituents of the quinoxaline ring, and produced 3-methyl-7-fluoro quinoxaline. This compound was the most effective in rat CAR test due to its strong PDE10A inhibitory activity and good pharmacokinetics.</description><identifier>ISSN: 0009-2363</identifier><identifier>EISSN: 1347-5223</identifier><identifier>DOI: 10.1248/cpb.c17-00783</identifier><identifier>PMID: 29491258</identifier><language>eng</language><publisher>Japan: The Pharmaceutical Society of Japan</publisher><subject>Animals ; Avoidance behavior ; Avoidance Learning - drug effects ; Binding Sites ; Brain ; conditioned avoidance response (CAR) ; Conditioning ; Crystallography, X-Ray ; Cyclic AMP ; Cyclic GMP ; Drug Evaluation, Preclinical ; Erectile dysfunction ; Homology ; Hydrolase ; Inhibitors ; Inhibitory Concentration 50 ; Mental disorders ; Molecular Dynamics Simulation ; Neostriatum ; Neurons ; Optimization ; Penetration ; Pharmacokinetics ; Pharmacology ; Phosphodiesterase ; phosphodiesterase (PDE) 10A ; Phosphodiesterase Inhibitors - chemistry ; Phosphodiesterase Inhibitors - metabolism ; Phosphodiesterase Inhibitors - pharmacology ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - metabolism ; Psychosis ; pyrimidine ; Pyrimidines - chemical synthesis ; Pyrimidines - chemistry ; Pyrimidines - pharmacology ; Quinoxaline ; Quinoxalines ; Quinoxalines - chemical synthesis ; Quinoxalines - chemistry ; Quinoxalines - pharmacology ; Rats ; Rodents ; Schizophrenia ; Signs and symptoms ; Spiny neurons ; Stilbene ; Structure-Activity Relationship ; Tetrahydro-2H-pyran</subject><ispartof>Chemical and Pharmaceutical Bulletin, 2018/03/01, Vol.66(3), pp.243-250</ispartof><rights>2018 The Pharmaceutical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c702t-e15422994d4faa9dc536211930440ce0fc548a6d9890796451103e80f7b30c123</citedby><cites>FETCH-LOGICAL-c702t-e15422994d4faa9dc536211930440ce0fc548a6d9890796451103e80f7b30c123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1877,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29491258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadoh, Yoichi</creatorcontrib><creatorcontrib>Miyoshi, Haruko</creatorcontrib><creatorcontrib>Matsumura, Takehiko</creatorcontrib><creatorcontrib>Tanaka, Yoshihito</creatorcontrib><creatorcontrib>Hongu, Mitsuya</creatorcontrib><creatorcontrib>Kimura, Mayumi</creatorcontrib><creatorcontrib>Takedomi, Kei</creatorcontrib><creatorcontrib>Omori, Kenji</creatorcontrib><creatorcontrib>Kotera, Jun</creatorcontrib><creatorcontrib>Sasaki, Takashi</creatorcontrib><creatorcontrib>Kobayashi, Tamaki</creatorcontrib><creatorcontrib>Taniguchi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Yumi</creatorcontrib><creatorcontrib>Kojima, Koki</creatorcontrib><creatorcontrib>Sakamoto, Toshiaki</creatorcontrib><creatorcontrib>Himiyama, Toshiyuki</creatorcontrib><creatorcontrib>Kawanishi, Eiji</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><creatorcontrib>Laboratory of Target and Drug Discovery</creatorcontrib><creatorcontrib>bMitsubishi Tanabe Pharma Corporation</creatorcontrib><creatorcontrib>aMitsubishi Tanabe Pharma Corporation</creatorcontrib><creatorcontrib>Graduate School of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>cIndustry and Academia Cooperation Research Project</creatorcontrib><title>Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor</title><title>Chemical &amp; pharmaceutical bulletin</title><addtitle>Chem. Pharm. Bull.</addtitle><description>Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptoms. Therefore PDE10A inhibitor is expected as a therapeutic method for psychosis disease such as schizophrenia. Avanafil (1) is a PDE5 inhibitor (treatment for erectile dysfunction) discovered by our company. We paid attention to the homology of PDE10A and PDE5 and took advantage of PDE5 inhibitor library to discover PDE10A inhibitors, and found a series of compounds that exhibit higher potency for PDE10A than PDE5. We transformed the afforded derivatives, which had weak inhibitory activity against PDE10A, and discovered stilbene as a PDE10A inhibitor. Brain penetration of this compound was improved by further conversion of N-containing heterocycles and their substituents. The afforded dimethylaminopyrimidine was effective for rat conditioned avoidance response (CAR) test; however, it did not exhibit good brain penetration. We performed in-depth optimization focusing on substituents of the quinoxaline ring, and produced 3-methyl-7-fluoro quinoxaline. This compound was the most effective in rat CAR test due to its strong PDE10A inhibitory activity and good pharmacokinetics.</description><subject>Animals</subject><subject>Avoidance behavior</subject><subject>Avoidance Learning - drug effects</subject><subject>Binding Sites</subject><subject>Brain</subject><subject>conditioned avoidance response (CAR)</subject><subject>Conditioning</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic AMP</subject><subject>Cyclic GMP</subject><subject>Drug Evaluation, Preclinical</subject><subject>Erectile dysfunction</subject><subject>Homology</subject><subject>Hydrolase</subject><subject>Inhibitors</subject><subject>Inhibitory Concentration 50</subject><subject>Mental disorders</subject><subject>Molecular Dynamics Simulation</subject><subject>Neostriatum</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Phosphodiesterase</subject><subject>phosphodiesterase (PDE) 10A</subject><subject>Phosphodiesterase Inhibitors - chemistry</subject><subject>Phosphodiesterase Inhibitors - metabolism</subject><subject>Phosphodiesterase Inhibitors - pharmacology</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Psychosis</subject><subject>pyrimidine</subject><subject>Pyrimidines - chemical synthesis</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - pharmacology</subject><subject>Quinoxaline</subject><subject>Quinoxalines</subject><subject>Quinoxalines - chemical synthesis</subject><subject>Quinoxalines - chemistry</subject><subject>Quinoxalines - pharmacology</subject><subject>Rats</subject><subject>Rodents</subject><subject>Schizophrenia</subject><subject>Signs and symptoms</subject><subject>Spiny neurons</subject><subject>Stilbene</subject><subject>Structure-Activity Relationship</subject><subject>Tetrahydro-2H-pyran</subject><issn>0009-2363</issn><issn>1347-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl9v0zAUxSMEYmXwyCuKxEv34OF_sZPHqevWSRMgAU8IWa7jLK7cuLOTinwuviA37egkXmxL5-d7j-9xlr0n-JJQXn4yu_WlIRJhLEv2IpsRxiUqKGUvsxnGuEKUCXaWvUlpgzEtsGSvszNa8YrQopxlf65dMmFv45iHJqfo53x5gSiaS3TjhxADYmhr-3b0j4Prwm_tXQfy6C_2rhv9LyTQbowxeFeDQEBAn9G8t33U7VjDdbqaAN0hPl2Co9seUI701nU2X02UaX2Irra5TrnOV-6h9WP-zXprere3-dfrJcFX-V3XurXrQ3ybvWq0T_bd036e_bhZfl-s0P2X27vF1T0yEtMeWVJwSquK17zRuqpNwQQlpGKYc2wsbkzBSy3qqqywrAQvCMHMlriRa4YNoew8mx_r7mJ4HGzq1RaGZb3XnQ1DUhTGWwhBqQD043_oJgyxA3cKoiClxAIzoNCRMjGkFG2jdjAPHUdFsJrSVJCmgjTVIU3gPzxVHdZbW5_of_EBcHsEQHVG-9BBPva5t0nStHbrwCopoagAF7BVClMOB_gODDMp-fTWxbHSJvX6wZ5a6dg74-3BmBCKTcvJ4LPa6qhsx_4CRorGhg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kadoh, Yoichi</creator><creator>Miyoshi, Haruko</creator><creator>Matsumura, Takehiko</creator><creator>Tanaka, Yoshihito</creator><creator>Hongu, Mitsuya</creator><creator>Kimura, Mayumi</creator><creator>Takedomi, Kei</creator><creator>Omori, Kenji</creator><creator>Kotera, Jun</creator><creator>Sasaki, Takashi</creator><creator>Kobayashi, Tamaki</creator><creator>Taniguchi, Hiroyuki</creator><creator>Watanabe, Yumi</creator><creator>Kojima, Koki</creator><creator>Sakamoto, Toshiaki</creator><creator>Himiyama, Toshiyuki</creator><creator>Kawanishi, Eiji</creator><general>The Pharmaceutical Society of Japan</general><general>Pharmaceutical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>2018</creationdate><title>Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor</title><author>Kadoh, Yoichi ; Miyoshi, Haruko ; Matsumura, Takehiko ; Tanaka, Yoshihito ; Hongu, Mitsuya ; Kimura, Mayumi ; Takedomi, Kei ; Omori, Kenji ; Kotera, Jun ; Sasaki, Takashi ; Kobayashi, Tamaki ; Taniguchi, Hiroyuki ; Watanabe, Yumi ; Kojima, Koki ; Sakamoto, Toshiaki ; Himiyama, Toshiyuki ; Kawanishi, Eiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c702t-e15422994d4faa9dc536211930440ce0fc548a6d9890796451103e80f7b30c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Avoidance behavior</topic><topic>Avoidance Learning - drug effects</topic><topic>Binding Sites</topic><topic>Brain</topic><topic>conditioned avoidance response (CAR)</topic><topic>Conditioning</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic AMP</topic><topic>Cyclic GMP</topic><topic>Drug Evaluation, Preclinical</topic><topic>Erectile dysfunction</topic><topic>Homology</topic><topic>Hydrolase</topic><topic>Inhibitors</topic><topic>Inhibitory Concentration 50</topic><topic>Mental disorders</topic><topic>Molecular Dynamics Simulation</topic><topic>Neostriatum</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Phosphodiesterase</topic><topic>phosphodiesterase (PDE) 10A</topic><topic>Phosphodiesterase Inhibitors - chemistry</topic><topic>Phosphodiesterase Inhibitors - metabolism</topic><topic>Phosphodiesterase Inhibitors - pharmacology</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Psychosis</topic><topic>pyrimidine</topic><topic>Pyrimidines - chemical synthesis</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - pharmacology</topic><topic>Quinoxaline</topic><topic>Quinoxalines</topic><topic>Quinoxalines - chemical synthesis</topic><topic>Quinoxalines - chemistry</topic><topic>Quinoxalines - pharmacology</topic><topic>Rats</topic><topic>Rodents</topic><topic>Schizophrenia</topic><topic>Signs and symptoms</topic><topic>Spiny neurons</topic><topic>Stilbene</topic><topic>Structure-Activity Relationship</topic><topic>Tetrahydro-2H-pyran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadoh, Yoichi</creatorcontrib><creatorcontrib>Miyoshi, Haruko</creatorcontrib><creatorcontrib>Matsumura, Takehiko</creatorcontrib><creatorcontrib>Tanaka, Yoshihito</creatorcontrib><creatorcontrib>Hongu, Mitsuya</creatorcontrib><creatorcontrib>Kimura, Mayumi</creatorcontrib><creatorcontrib>Takedomi, Kei</creatorcontrib><creatorcontrib>Omori, Kenji</creatorcontrib><creatorcontrib>Kotera, Jun</creatorcontrib><creatorcontrib>Sasaki, Takashi</creatorcontrib><creatorcontrib>Kobayashi, Tamaki</creatorcontrib><creatorcontrib>Taniguchi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Yumi</creatorcontrib><creatorcontrib>Kojima, Koki</creatorcontrib><creatorcontrib>Sakamoto, Toshiaki</creatorcontrib><creatorcontrib>Himiyama, Toshiyuki</creatorcontrib><creatorcontrib>Kawanishi, Eiji</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><creatorcontrib>Laboratory of Target and Drug Discovery</creatorcontrib><creatorcontrib>bMitsubishi Tanabe Pharma Corporation</creatorcontrib><creatorcontrib>aMitsubishi Tanabe Pharma Corporation</creatorcontrib><creatorcontrib>Graduate School of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>cIndustry and Academia Cooperation Research Project</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical &amp; pharmaceutical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadoh, Yoichi</au><au>Miyoshi, Haruko</au><au>Matsumura, Takehiko</au><au>Tanaka, Yoshihito</au><au>Hongu, Mitsuya</au><au>Kimura, Mayumi</au><au>Takedomi, Kei</au><au>Omori, Kenji</au><au>Kotera, Jun</au><au>Sasaki, Takashi</au><au>Kobayashi, Tamaki</au><au>Taniguchi, Hiroyuki</au><au>Watanabe, Yumi</au><au>Kojima, Koki</au><au>Sakamoto, Toshiaki</au><au>Himiyama, Toshiyuki</au><au>Kawanishi, Eiji</au><aucorp>Nagoya University</aucorp><aucorp>Laboratory of Target and Drug Discovery</aucorp><aucorp>bMitsubishi Tanabe Pharma Corporation</aucorp><aucorp>aMitsubishi Tanabe Pharma Corporation</aucorp><aucorp>Graduate School of Pharmaceutical Sciences</aucorp><aucorp>cIndustry and Academia Cooperation Research Project</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor</atitle><jtitle>Chemical &amp; pharmaceutical bulletin</jtitle><addtitle>Chem. Pharm. Bull.</addtitle><date>2018</date><risdate>2018</risdate><volume>66</volume><issue>3</issue><spage>243</spage><epage>250</epage><pages>243-250</pages><issn>0009-2363</issn><eissn>1347-5223</eissn><abstract>Phosphodiesterase (PDE) 10A is a dual hydrolase of cAMP and cGMP and highly expressed in striatal medium spiny neurons. Inhibition of PDE10A modulates the activity of medium spiny neurons (MSN) via the regulation of cAMP and cGMP. Signal control of MSN is considered associated with psychotic symptoms. Therefore PDE10A inhibitor is expected as a therapeutic method for psychosis disease such as schizophrenia. Avanafil (1) is a PDE5 inhibitor (treatment for erectile dysfunction) discovered by our company. We paid attention to the homology of PDE10A and PDE5 and took advantage of PDE5 inhibitor library to discover PDE10A inhibitors, and found a series of compounds that exhibit higher potency for PDE10A than PDE5. We transformed the afforded derivatives, which had weak inhibitory activity against PDE10A, and discovered stilbene as a PDE10A inhibitor. Brain penetration of this compound was improved by further conversion of N-containing heterocycles and their substituents. The afforded dimethylaminopyrimidine was effective for rat conditioned avoidance response (CAR) test; however, it did not exhibit good brain penetration. We performed in-depth optimization focusing on substituents of the quinoxaline ring, and produced 3-methyl-7-fluoro quinoxaline. This compound was the most effective in rat CAR test due to its strong PDE10A inhibitory activity and good pharmacokinetics.</abstract><cop>Japan</cop><pub>The Pharmaceutical Society of Japan</pub><pmid>29491258</pmid><doi>10.1248/cpb.c17-00783</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2363
ispartof Chemical and Pharmaceutical Bulletin, 2018/03/01, Vol.66(3), pp.243-250
issn 0009-2363
1347-5223
language eng
recordid cdi_proquest_miscellaneous_2009566226
source J-STAGE Free; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Avoidance behavior
Avoidance Learning - drug effects
Binding Sites
Brain
conditioned avoidance response (CAR)
Conditioning
Crystallography, X-Ray
Cyclic AMP
Cyclic GMP
Drug Evaluation, Preclinical
Erectile dysfunction
Homology
Hydrolase
Inhibitors
Inhibitory Concentration 50
Mental disorders
Molecular Dynamics Simulation
Neostriatum
Neurons
Optimization
Penetration
Pharmacokinetics
Pharmacology
Phosphodiesterase
phosphodiesterase (PDE) 10A
Phosphodiesterase Inhibitors - chemistry
Phosphodiesterase Inhibitors - metabolism
Phosphodiesterase Inhibitors - pharmacology
Phosphoric Diester Hydrolases - chemistry
Phosphoric Diester Hydrolases - metabolism
Psychosis
pyrimidine
Pyrimidines - chemical synthesis
Pyrimidines - chemistry
Pyrimidines - pharmacology
Quinoxaline
Quinoxalines
Quinoxalines - chemical synthesis
Quinoxalines - chemistry
Quinoxalines - pharmacology
Rats
Rodents
Schizophrenia
Signs and symptoms
Spiny neurons
Stilbene
Structure-Activity Relationship
Tetrahydro-2H-pyran
title Discovery of 2-[(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl]-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine Hydrochloride as a Highly Selective PDE10A Inhibitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%202-%5B(E)-2-(7-Fluoro-3-methylquinoxalin-2-yl)vinyl%5D-6-pyrrolidin-1-yl-N-(tetrahydro-2H-pyran-4-yl)pyrimidin-4-amine%20Hydrochloride%20as%20a%20Highly%20Selective%20PDE10A%20Inhibitor&rft.jtitle=Chemical%20&%20pharmaceutical%20bulletin&rft.au=Kadoh,%20Yoichi&rft.aucorp=Nagoya%20University&rft.date=2018&rft.volume=66&rft.issue=3&rft.spage=243&rft.epage=250&rft.pages=243-250&rft.issn=0009-2363&rft.eissn=1347-5223&rft_id=info:doi/10.1248/cpb.c17-00783&rft_dat=%3Cproquest_cross%3E2009566226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231870603&rft_id=info:pmid/29491258&rfr_iscdi=true