Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability
Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions pose...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-03, Vol.10 (11), p.9663-9668 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9668 |
---|---|
container_issue | 11 |
container_start_page | 9663 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Lv, Weiming Yang, Bingchao Wang, Bochong Wan, Wenhui Ge, Yanfeng Yang, Ruilong Hao, Chunxue Xiang, Jianyong Zhang, Baoshun Zeng, Zhongming Liu, Zhongyuan |
description | Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus. |
doi_str_mv | 10.1021/acsami.7b19169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008884771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008884771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoTqdXj9KjCJ1JmrbJUeemwlBh81ySNKGZbVOTFtm_N9K5m6cvfHneF74HgCsEZwhidMel542Z5QIxlLEjcIYYITHFKT4-vAmZgHPvtxBmCYbpKZhgRiiCSXoGXtdDrQcXP9pOldFDzeVn9F5Z31XWDT5aGlWX8UJrJfto43jrje-t89G36ato0Va8lSG37rkwtel3F-BE89qry_2cgo_lYjN_jldvTy_z-1XMkwT2ccIoQlRopolkgkrORY6l4GHPkCJCZalmDDKEs5KSHIXPFBKZiZxkSpA0mYKbsbdz9mtQvi8a46Wqa94qO_gCQ0hpSOYooLMRlc5675QuOmca7nYFgsWvw2J0WOwdhsD1vnsQjSoP-J-0ANyOQAgWWzu4Npz6X9sPPaN7pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884771</pqid></control><display><type>article</type><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><source>ACS Publications</source><creator>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</creator><creatorcontrib>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</creatorcontrib><description>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b19169</identifier><identifier>PMID: 29481035</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-03, Vol.10 (11), p.9663-9668</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</citedby><cites>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</cites><orcidid>0000-0001-5801-5369 ; 0000-0002-5600-8998 ; 0000-0001-9374-7127 ; 0000-0001-7240-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b19169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b19169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Weiming</creatorcontrib><creatorcontrib>Yang, Bingchao</creatorcontrib><creatorcontrib>Wang, Bochong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><creatorcontrib>Yang, Ruilong</creatorcontrib><creatorcontrib>Hao, Chunxue</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoTqdXj9KjCJ1JmrbJUeemwlBh81ySNKGZbVOTFtm_N9K5m6cvfHneF74HgCsEZwhidMel542Z5QIxlLEjcIYYITHFKT4-vAmZgHPvtxBmCYbpKZhgRiiCSXoGXtdDrQcXP9pOldFDzeVn9F5Z31XWDT5aGlWX8UJrJfto43jrje-t89G36ato0Va8lSG37rkwtel3F-BE89qry_2cgo_lYjN_jldvTy_z-1XMkwT2ccIoQlRopolkgkrORY6l4GHPkCJCZalmDDKEs5KSHIXPFBKZiZxkSpA0mYKbsbdz9mtQvi8a46Wqa94qO_gCQ0hpSOYooLMRlc5675QuOmca7nYFgsWvw2J0WOwdhsD1vnsQjSoP-J-0ANyOQAgWWzu4Npz6X9sPPaN7pQ</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Lv, Weiming</creator><creator>Yang, Bingchao</creator><creator>Wang, Bochong</creator><creator>Wan, Wenhui</creator><creator>Ge, Yanfeng</creator><creator>Yang, Ruilong</creator><creator>Hao, Chunxue</creator><creator>Xiang, Jianyong</creator><creator>Zhang, Baoshun</creator><creator>Zeng, Zhongming</creator><creator>Liu, Zhongyuan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5801-5369</orcidid><orcidid>https://orcid.org/0000-0002-5600-8998</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid><orcidid>https://orcid.org/0000-0001-7240-2058</orcidid></search><sort><creationdate>20180321</creationdate><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><author>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Weiming</creatorcontrib><creatorcontrib>Yang, Bingchao</creatorcontrib><creatorcontrib>Wang, Bochong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><creatorcontrib>Yang, Ruilong</creatorcontrib><creatorcontrib>Hao, Chunxue</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Weiming</au><au>Yang, Bingchao</au><au>Wang, Bochong</au><au>Wan, Wenhui</au><au>Ge, Yanfeng</au><au>Yang, Ruilong</au><au>Hao, Chunxue</au><au>Xiang, Jianyong</au><au>Zhang, Baoshun</au><au>Zeng, Zhongming</au><au>Liu, Zhongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>9663</spage><epage>9668</epage><pages>9663-9668</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481035</pmid><doi>10.1021/acsami.7b19169</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5801-5369</orcidid><orcidid>https://orcid.org/0000-0002-5600-8998</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid><orcidid>https://orcid.org/0000-0001-7240-2058</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-03, Vol.10 (11), p.9663-9668 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2008884771 |
source | ACS Publications |
title | Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-Doped%20Black%20Phosphorus%20Field-Effect%20Transistors%20with%20Enhanced%20Stability&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lv,%20Weiming&rft.date=2018-03-21&rft.volume=10&rft.issue=11&rft.spage=9663&rft.epage=9668&rft.pages=9663-9668&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b19169&rft_dat=%3Cproquest_cross%3E2008884771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008884771&rft_id=info:pmid/29481035&rfr_iscdi=true |