Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability

Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions pose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-03, Vol.10 (11), p.9663-9668
Hauptverfasser: Lv, Weiming, Yang, Bingchao, Wang, Bochong, Wan, Wenhui, Ge, Yanfeng, Yang, Ruilong, Hao, Chunxue, Xiang, Jianyong, Zhang, Baoshun, Zeng, Zhongming, Liu, Zhongyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9668
container_issue 11
container_start_page 9663
container_title ACS applied materials & interfaces
container_volume 10
creator Lv, Weiming
Yang, Bingchao
Wang, Bochong
Wan, Wenhui
Ge, Yanfeng
Yang, Ruilong
Hao, Chunxue
Xiang, Jianyong
Zhang, Baoshun
Zeng, Zhongming
Liu, Zhongyuan
description Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.
doi_str_mv 10.1021/acsami.7b19169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008884771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008884771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoTqdXj9KjCJ1JmrbJUeemwlBh81ySNKGZbVOTFtm_N9K5m6cvfHneF74HgCsEZwhidMel542Z5QIxlLEjcIYYITHFKT4-vAmZgHPvtxBmCYbpKZhgRiiCSXoGXtdDrQcXP9pOldFDzeVn9F5Z31XWDT5aGlWX8UJrJfto43jrje-t89G36ato0Va8lSG37rkwtel3F-BE89qry_2cgo_lYjN_jldvTy_z-1XMkwT2ccIoQlRopolkgkrORY6l4GHPkCJCZalmDDKEs5KSHIXPFBKZiZxkSpA0mYKbsbdz9mtQvi8a46Wqa94qO_gCQ0hpSOYooLMRlc5675QuOmca7nYFgsWvw2J0WOwdhsD1vnsQjSoP-J-0ANyOQAgWWzu4Npz6X9sPPaN7pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884771</pqid></control><display><type>article</type><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><source>ACS Publications</source><creator>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</creator><creatorcontrib>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</creatorcontrib><description>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b19169</identifier><identifier>PMID: 29481035</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-03, Vol.10 (11), p.9663-9668</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</citedby><cites>FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</cites><orcidid>0000-0001-5801-5369 ; 0000-0002-5600-8998 ; 0000-0001-9374-7127 ; 0000-0001-7240-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b19169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b19169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Weiming</creatorcontrib><creatorcontrib>Yang, Bingchao</creatorcontrib><creatorcontrib>Wang, Bochong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><creatorcontrib>Yang, Ruilong</creatorcontrib><creatorcontrib>Hao, Chunxue</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoTqdXj9KjCJ1JmrbJUeemwlBh81ySNKGZbVOTFtm_N9K5m6cvfHneF74HgCsEZwhidMel542Z5QIxlLEjcIYYITHFKT4-vAmZgHPvtxBmCYbpKZhgRiiCSXoGXtdDrQcXP9pOldFDzeVn9F5Z31XWDT5aGlWX8UJrJfto43jrje-t89G36ato0Va8lSG37rkwtel3F-BE89qry_2cgo_lYjN_jldvTy_z-1XMkwT2ccIoQlRopolkgkrORY6l4GHPkCJCZalmDDKEs5KSHIXPFBKZiZxkSpA0mYKbsbdz9mtQvi8a46Wqa94qO_gCQ0hpSOYooLMRlc5675QuOmca7nYFgsWvw2J0WOwdhsD1vnsQjSoP-J-0ANyOQAgWWzu4Npz6X9sPPaN7pQ</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Lv, Weiming</creator><creator>Yang, Bingchao</creator><creator>Wang, Bochong</creator><creator>Wan, Wenhui</creator><creator>Ge, Yanfeng</creator><creator>Yang, Ruilong</creator><creator>Hao, Chunxue</creator><creator>Xiang, Jianyong</creator><creator>Zhang, Baoshun</creator><creator>Zeng, Zhongming</creator><creator>Liu, Zhongyuan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5801-5369</orcidid><orcidid>https://orcid.org/0000-0002-5600-8998</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid><orcidid>https://orcid.org/0000-0001-7240-2058</orcidid></search><sort><creationdate>20180321</creationdate><title>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</title><author>Lv, Weiming ; Yang, Bingchao ; Wang, Bochong ; Wan, Wenhui ; Ge, Yanfeng ; Yang, Ruilong ; Hao, Chunxue ; Xiang, Jianyong ; Zhang, Baoshun ; Zeng, Zhongming ; Liu, Zhongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-398118bf9f4c9b8caab72cba39891e4be65f9909126d847172c504c6b746eb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Weiming</creatorcontrib><creatorcontrib>Yang, Bingchao</creatorcontrib><creatorcontrib>Wang, Bochong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><creatorcontrib>Yang, Ruilong</creatorcontrib><creatorcontrib>Hao, Chunxue</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Weiming</au><au>Yang, Bingchao</au><au>Wang, Bochong</au><au>Wan, Wenhui</au><au>Ge, Yanfeng</au><au>Yang, Ruilong</au><au>Hao, Chunxue</au><au>Xiang, Jianyong</au><au>Zhang, Baoshun</au><au>Zeng, Zhongming</au><au>Liu, Zhongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>9663</spage><epage>9668</epage><pages>9663-9668</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I on/I off ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V–1 s–1 (remained as high as 77.4%) under ambient conditions and a large I on/I off ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2 –. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481035</pmid><doi>10.1021/acsami.7b19169</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5801-5369</orcidid><orcidid>https://orcid.org/0000-0002-5600-8998</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid><orcidid>https://orcid.org/0000-0001-7240-2058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-03, Vol.10 (11), p.9663-9668
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2008884771
source ACS Publications
title Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-Doped%20Black%20Phosphorus%20Field-Effect%20Transistors%20with%20Enhanced%20Stability&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lv,%20Weiming&rft.date=2018-03-21&rft.volume=10&rft.issue=11&rft.spage=9663&rft.epage=9668&rft.pages=9663-9668&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b19169&rft_dat=%3Cproquest_cross%3E2008884771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008884771&rft_id=info:pmid/29481035&rfr_iscdi=true