Silver-based surface plasmon waveguide for terahertz quantum cascade lasers

Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-02, Vol.26 (4), p.3814-3827
Hauptverfasser: Han, Y J, Li, L H, Zhu, J, Valavanis, A, Freeman, J R, Chen, L, Rosamond, M, Dean, P, Davies, A G, Linfield, E H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3827
container_issue 4
container_start_page 3814
container_title Optics express
container_volume 26
creator Han, Y J
Li, L H
Zhu, J
Valavanis, A
Freeman, J R
Chen, L
Rosamond, M
Dean, P
Davies, A G
Linfield, E H
description Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10 cm , an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.
doi_str_mv 10.1364/OE.26.003814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007981206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007981206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef9567dc6cbe793e2a814d0ac92b1db6900ee33de3eff4a407dfb6473d17f40c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqWwMaOMDKQ8x64dj6gKH6JSB2C2HPsZgpKmtZMi-PUEtSCmd6V3dHV1CDmnMKVM8OtlMc3EFIDllB-QMQXFUw65PPyXR-QkxncAyqWSx2SUKS5nTMCYPD5V9RZDWpqILol98MZisq5NbNpV8mG2-NpXDhPfhqTDYN4wdF_Jpjerrm8Sa6I1w3fAMcRTcuRNHfFsfyfk5bZ4nt-ni-Xdw_xmkVrO8i5Fr2ZCOitsiVIxzMyw3IGxKiupK4UCQGTMIUPvueEgnS8Fl8xR6TlYNiGXu951aDc9xk43VbRY12aFbR91BiBVTjMQA3q1Q21oYwzo9TpUjQmfmoL-0aeXhc6E3ukb8It9c1826P7gX1_sG1TJa6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007981206</pqid></control><display><type>article</type><title>Silver-based surface plasmon waveguide for terahertz quantum cascade lasers</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Han, Y J ; Li, L H ; Zhu, J ; Valavanis, A ; Freeman, J R ; Chen, L ; Rosamond, M ; Dean, P ; Davies, A G ; Linfield, E H</creator><creatorcontrib>Han, Y J ; Li, L H ; Zhu, J ; Valavanis, A ; Freeman, J R ; Chen, L ; Rosamond, M ; Dean, P ; Davies, A G ; Linfield, E H</creatorcontrib><description>Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10 cm , an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.26.003814</identifier><identifier>PMID: 29475360</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2018-02, Vol.26 (4), p.3814-3827</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef9567dc6cbe793e2a814d0ac92b1db6900ee33de3eff4a407dfb6473d17f40c3</citedby><cites>FETCH-LOGICAL-c438t-ef9567dc6cbe793e2a814d0ac92b1db6900ee33de3eff4a407dfb6473d17f40c3</cites><orcidid>0000-0001-5565-0463 ; 0000-0002-5493-6352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29475360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Y J</creatorcontrib><creatorcontrib>Li, L H</creatorcontrib><creatorcontrib>Zhu, J</creatorcontrib><creatorcontrib>Valavanis, A</creatorcontrib><creatorcontrib>Freeman, J R</creatorcontrib><creatorcontrib>Chen, L</creatorcontrib><creatorcontrib>Rosamond, M</creatorcontrib><creatorcontrib>Dean, P</creatorcontrib><creatorcontrib>Davies, A G</creatorcontrib><creatorcontrib>Linfield, E H</creatorcontrib><title>Silver-based surface plasmon waveguide for terahertz quantum cascade lasers</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10 cm , an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqWwMaOMDKQ8x64dj6gKH6JSB2C2HPsZgpKmtZMi-PUEtSCmd6V3dHV1CDmnMKVM8OtlMc3EFIDllB-QMQXFUw65PPyXR-QkxncAyqWSx2SUKS5nTMCYPD5V9RZDWpqILol98MZisq5NbNpV8mG2-NpXDhPfhqTDYN4wdF_Jpjerrm8Sa6I1w3fAMcRTcuRNHfFsfyfk5bZ4nt-ni-Xdw_xmkVrO8i5Fr2ZCOitsiVIxzMyw3IGxKiupK4UCQGTMIUPvueEgnS8Fl8xR6TlYNiGXu951aDc9xk43VbRY12aFbR91BiBVTjMQA3q1Q21oYwzo9TpUjQmfmoL-0aeXhc6E3ukb8It9c1826P7gX1_sG1TJa6A</recordid><startdate>20180219</startdate><enddate>20180219</enddate><creator>Han, Y J</creator><creator>Li, L H</creator><creator>Zhu, J</creator><creator>Valavanis, A</creator><creator>Freeman, J R</creator><creator>Chen, L</creator><creator>Rosamond, M</creator><creator>Dean, P</creator><creator>Davies, A G</creator><creator>Linfield, E H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5565-0463</orcidid><orcidid>https://orcid.org/0000-0002-5493-6352</orcidid></search><sort><creationdate>20180219</creationdate><title>Silver-based surface plasmon waveguide for terahertz quantum cascade lasers</title><author>Han, Y J ; Li, L H ; Zhu, J ; Valavanis, A ; Freeman, J R ; Chen, L ; Rosamond, M ; Dean, P ; Davies, A G ; Linfield, E H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef9567dc6cbe793e2a814d0ac92b1db6900ee33de3eff4a407dfb6473d17f40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Y J</creatorcontrib><creatorcontrib>Li, L H</creatorcontrib><creatorcontrib>Zhu, J</creatorcontrib><creatorcontrib>Valavanis, A</creatorcontrib><creatorcontrib>Freeman, J R</creatorcontrib><creatorcontrib>Chen, L</creatorcontrib><creatorcontrib>Rosamond, M</creatorcontrib><creatorcontrib>Dean, P</creatorcontrib><creatorcontrib>Davies, A G</creatorcontrib><creatorcontrib>Linfield, E H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Y J</au><au>Li, L H</au><au>Zhu, J</au><au>Valavanis, A</au><au>Freeman, J R</au><au>Chen, L</au><au>Rosamond, M</au><au>Dean, P</au><au>Davies, A G</au><au>Linfield, E H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver-based surface plasmon waveguide for terahertz quantum cascade lasers</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2018-02-19</date><risdate>2018</risdate><volume>26</volume><issue>4</issue><spage>3814</spage><epage>3827</epage><pages>3814-3827</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10 cm , an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.</abstract><cop>United States</cop><pmid>29475360</pmid><doi>10.1364/OE.26.003814</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5565-0463</orcidid><orcidid>https://orcid.org/0000-0002-5493-6352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2018-02, Vol.26 (4), p.3814-3827
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2007981206
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Silver-based surface plasmon waveguide for terahertz quantum cascade lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver-based%20surface%20plasmon%20waveguide%20for%20terahertz%20quantum%20cascade%20lasers&rft.jtitle=Optics%20express&rft.au=Han,%20Y%20J&rft.date=2018-02-19&rft.volume=26&rft.issue=4&rft.spage=3814&rft.epage=3827&rft.pages=3814-3827&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.26.003814&rft_dat=%3Cproquest_cross%3E2007981206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007981206&rft_id=info:pmid/29475360&rfr_iscdi=true