Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart

We studied the effects of the major long‐chain fatty acids accumulating in very long‐chain acyl‐CoA dehydrogenase (VLCAD) deficiency, namely cis‐5‐tetradecenoic acid (Cis‐5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2018-04, Vol.285 (8), p.1437-1455
Hauptverfasser: Cecatto, Cristiane, Amaral, Alexandre Umpierrez, Silva, Janaína Camacho, Wajner, Alessandro, Schimit, Mariana de Oliveira Vargas, Silva, Lucas Henrique Rodrigues, Wajner, Simone Magagnin, Zanatta, Ângela, Castilho, Roger Frigério, Wajner, Moacir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 8
container_start_page 1437
container_title The FEBS journal
container_volume 285
creator Cecatto, Cristiane
Amaral, Alexandre Umpierrez
Silva, Janaína Camacho
Wajner, Alessandro
Schimit, Mariana de Oliveira Vargas
Silva, Lucas Henrique Rodrigues
Wajner, Simone Magagnin
Zanatta, Ângela
Castilho, Roger Frigério
Wajner, Moacir
description We studied the effects of the major long‐chain fatty acids accumulating in very long‐chain acyl‐CoA dehydrogenase (VLCAD) deficiency, namely cis‐5‐tetradecenoic acid (Cis‐5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis‐5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity, ADP‐ (state 3) and carbonyl cyanide 3‐chlorophenyl hydrazine‐stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis‐5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis‐5‐ and Myr‐induced decrease in ΔΨm in Ca2+‐loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long‐chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency. Cis‐5‐tetradecenoic (Cis‐5) and myristic (Myr) acids, which accumulate in very long‐chain acyl‐CoA dehydrogenase deficiency (VLCFA), reduce mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity and ATP generation in the rat heart. They also cause uncoupling of oxidative phosphorylation (OXPHOS) and induce mitochondrial permeability transition (MPT) pore opening. These data support a severe damage in heart mitochondrial bioenergetics caused by these compounds.
doi_str_mv 10.1111/febs.14419
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007980016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007980016</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2249-14edff656a874d062a83929f352f37687ca08206b26f8aebc43798d22a02cd423</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhCMEEqVw4QkscUFCLfbGSZxjKS0gFXHgR9wix94QlyQOsSNU8fKkFHFgLzuHb0ermSA4ZXTKhrksMHdTxjlL94IRSzhMeByJ_T_NXw-DI-fWlIYRT9NR8HWPXua2Mh6JVKqv-0p6YxtiGvKyms-uicbCKION2pBadu-oqw3RxnV96x2pjbeqtI3ujKxIbiw22L2hN8oR2Wgyl3BBSlujdV4647a2vkRSouz8cXBQyMrhye8eB8_LxdP8drJ6uLmbz1aTFoCnE8ZRF0UcxVIkXNMYpAhTSIswgiJMYpEoSQXQOIe4EBJzxcMkFRpAUlCaQzgOzne-bWc_enQ-q41TWFWyQdu7DCgdDihl8YCe_UPXtu-a4buBAiGAR8AGiu2oT1PhJms7MySzyRjNtiVk2xKynxKy5eLq8UeF36OCfRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028824521</pqid></control><display><type>article</type><title>Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Cecatto, Cristiane ; Amaral, Alexandre Umpierrez ; Silva, Janaína Camacho ; Wajner, Alessandro ; Schimit, Mariana de Oliveira Vargas ; Silva, Lucas Henrique Rodrigues ; Wajner, Simone Magagnin ; Zanatta, Ângela ; Castilho, Roger Frigério ; Wajner, Moacir</creator><creatorcontrib>Cecatto, Cristiane ; Amaral, Alexandre Umpierrez ; Silva, Janaína Camacho ; Wajner, Alessandro ; Schimit, Mariana de Oliveira Vargas ; Silva, Lucas Henrique Rodrigues ; Wajner, Simone Magagnin ; Zanatta, Ângela ; Castilho, Roger Frigério ; Wajner, Moacir</creatorcontrib><description>We studied the effects of the major long‐chain fatty acids accumulating in very long‐chain acyl‐CoA dehydrogenase (VLCAD) deficiency, namely cis‐5‐tetradecenoic acid (Cis‐5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis‐5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity, ADP‐ (state 3) and carbonyl cyanide 3‐chlorophenyl hydrazine‐stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis‐5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis‐5‐ and Myr‐induced decrease in ΔΨm in Ca2+‐loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long‐chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency. Cis‐5‐tetradecenoic (Cis‐5) and myristic (Myr) acids, which accumulate in very long‐chain acyl‐CoA dehydrogenase deficiency (VLCFA), reduce mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity and ATP generation in the rat heart. They also cause uncoupling of oxidative phosphorylation (OXPHOS) and induce mitochondrial permeability transition (MPT) pore opening. These data support a severe damage in heart mitochondrial bioenergetics caused by these compounds.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14419</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Adenine ; Adenosine diphosphate ; Adenosine triphosphate ; Bioenergetics ; Calcium (mitochondrial) ; Calcium homeostasis ; Calcium influx ; Calcium ions ; Carbonyls ; Cardiomyocytes ; Chains ; cis‐5‐tetradecenoic acid ; Cyanides ; Cyclosporin A ; Fatty acids ; Heart ; Heart diseases ; Homeostasis ; Hydrazine ; Inhibitors ; Membrane permeability ; Membrane potential ; Mitochondria ; mitochondrial Ca2+ homeostasis ; Mitochondrial DNA ; mitochondrial energy homeostasis ; myristic acid ; NAD ; Oxidative phosphorylation ; Phosphorylation ; Respiration ; Retention capacity ; Ruthenium ; Ruthenium red ; Uncouplers ; very long‐chain acyl‐CoA dehydrogenase</subject><ispartof>The FEBS journal, 2018-04, Vol.285 (8), p.1437-1455</ispartof><rights>2018 Federation of European Biochemical Societies</rights><rights>Copyright © 2018 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Cecatto, Cristiane</creatorcontrib><creatorcontrib>Amaral, Alexandre Umpierrez</creatorcontrib><creatorcontrib>Silva, Janaína Camacho</creatorcontrib><creatorcontrib>Wajner, Alessandro</creatorcontrib><creatorcontrib>Schimit, Mariana de Oliveira Vargas</creatorcontrib><creatorcontrib>Silva, Lucas Henrique Rodrigues</creatorcontrib><creatorcontrib>Wajner, Simone Magagnin</creatorcontrib><creatorcontrib>Zanatta, Ângela</creatorcontrib><creatorcontrib>Castilho, Roger Frigério</creatorcontrib><creatorcontrib>Wajner, Moacir</creatorcontrib><title>Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart</title><title>The FEBS journal</title><description>We studied the effects of the major long‐chain fatty acids accumulating in very long‐chain acyl‐CoA dehydrogenase (VLCAD) deficiency, namely cis‐5‐tetradecenoic acid (Cis‐5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis‐5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity, ADP‐ (state 3) and carbonyl cyanide 3‐chlorophenyl hydrazine‐stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis‐5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis‐5‐ and Myr‐induced decrease in ΔΨm in Ca2+‐loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long‐chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency. Cis‐5‐tetradecenoic (Cis‐5) and myristic (Myr) acids, which accumulate in very long‐chain acyl‐CoA dehydrogenase deficiency (VLCFA), reduce mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity and ATP generation in the rat heart. They also cause uncoupling of oxidative phosphorylation (OXPHOS) and induce mitochondrial permeability transition (MPT) pore opening. These data support a severe damage in heart mitochondrial bioenergetics caused by these compounds.</description><subject>Accumulation</subject><subject>Adenine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphate</subject><subject>Bioenergetics</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium homeostasis</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Carbonyls</subject><subject>Cardiomyocytes</subject><subject>Chains</subject><subject>cis‐5‐tetradecenoic acid</subject><subject>Cyanides</subject><subject>Cyclosporin A</subject><subject>Fatty acids</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Hydrazine</subject><subject>Inhibitors</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>mitochondrial Ca2+ homeostasis</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial energy homeostasis</subject><subject>myristic acid</subject><subject>NAD</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Respiration</subject><subject>Retention capacity</subject><subject>Ruthenium</subject><subject>Ruthenium red</subject><subject>Uncouplers</subject><subject>very long‐chain acyl‐CoA dehydrogenase</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OwzAQhCMEEqVw4QkscUFCLfbGSZxjKS0gFXHgR9wix94QlyQOsSNU8fKkFHFgLzuHb0ermSA4ZXTKhrksMHdTxjlL94IRSzhMeByJ_T_NXw-DI-fWlIYRT9NR8HWPXua2Mh6JVKqv-0p6YxtiGvKyms-uicbCKION2pBadu-oqw3RxnV96x2pjbeqtI3ujKxIbiw22L2hN8oR2Wgyl3BBSlujdV4647a2vkRSouz8cXBQyMrhye8eB8_LxdP8drJ6uLmbz1aTFoCnE8ZRF0UcxVIkXNMYpAhTSIswgiJMYpEoSQXQOIe4EBJzxcMkFRpAUlCaQzgOzne-bWc_enQ-q41TWFWyQdu7DCgdDihl8YCe_UPXtu-a4buBAiGAR8AGiu2oT1PhJms7MySzyRjNtiVk2xKynxKy5eLq8UeF36OCfRY</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Cecatto, Cristiane</creator><creator>Amaral, Alexandre Umpierrez</creator><creator>Silva, Janaína Camacho</creator><creator>Wajner, Alessandro</creator><creator>Schimit, Mariana de Oliveira Vargas</creator><creator>Silva, Lucas Henrique Rodrigues</creator><creator>Wajner, Simone Magagnin</creator><creator>Zanatta, Ângela</creator><creator>Castilho, Roger Frigério</creator><creator>Wajner, Moacir</creator><general>Blackwell Publishing Ltd</general><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart</title><author>Cecatto, Cristiane ; Amaral, Alexandre Umpierrez ; Silva, Janaína Camacho ; Wajner, Alessandro ; Schimit, Mariana de Oliveira Vargas ; Silva, Lucas Henrique Rodrigues ; Wajner, Simone Magagnin ; Zanatta, Ângela ; Castilho, Roger Frigério ; Wajner, Moacir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2249-14edff656a874d062a83929f352f37687ca08206b26f8aebc43798d22a02cd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Adenine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphate</topic><topic>Bioenergetics</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium homeostasis</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Carbonyls</topic><topic>Cardiomyocytes</topic><topic>Chains</topic><topic>cis‐5‐tetradecenoic acid</topic><topic>Cyanides</topic><topic>Cyclosporin A</topic><topic>Fatty acids</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Hydrazine</topic><topic>Inhibitors</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>mitochondrial Ca2+ homeostasis</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial energy homeostasis</topic><topic>myristic acid</topic><topic>NAD</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Respiration</topic><topic>Retention capacity</topic><topic>Ruthenium</topic><topic>Ruthenium red</topic><topic>Uncouplers</topic><topic>very long‐chain acyl‐CoA dehydrogenase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cecatto, Cristiane</creatorcontrib><creatorcontrib>Amaral, Alexandre Umpierrez</creatorcontrib><creatorcontrib>Silva, Janaína Camacho</creatorcontrib><creatorcontrib>Wajner, Alessandro</creatorcontrib><creatorcontrib>Schimit, Mariana de Oliveira Vargas</creatorcontrib><creatorcontrib>Silva, Lucas Henrique Rodrigues</creatorcontrib><creatorcontrib>Wajner, Simone Magagnin</creatorcontrib><creatorcontrib>Zanatta, Ângela</creatorcontrib><creatorcontrib>Castilho, Roger Frigério</creatorcontrib><creatorcontrib>Wajner, Moacir</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cecatto, Cristiane</au><au>Amaral, Alexandre Umpierrez</au><au>Silva, Janaína Camacho</au><au>Wajner, Alessandro</au><au>Schimit, Mariana de Oliveira Vargas</au><au>Silva, Lucas Henrique Rodrigues</au><au>Wajner, Simone Magagnin</au><au>Zanatta, Ângela</au><au>Castilho, Roger Frigério</au><au>Wajner, Moacir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart</atitle><jtitle>The FEBS journal</jtitle><date>2018-04</date><risdate>2018</risdate><volume>285</volume><issue>8</issue><spage>1437</spage><epage>1455</epage><pages>1437-1455</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>We studied the effects of the major long‐chain fatty acids accumulating in very long‐chain acyl‐CoA dehydrogenase (VLCAD) deficiency, namely cis‐5‐tetradecenoic acid (Cis‐5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis‐5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity, ADP‐ (state 3) and carbonyl cyanide 3‐chlorophenyl hydrazine‐stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis‐5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis‐5‐ and Myr‐induced decrease in ΔΨm in Ca2+‐loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long‐chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency. Cis‐5‐tetradecenoic (Cis‐5) and myristic (Myr) acids, which accumulate in very long‐chain acyl‐CoA dehydrogenase deficiency (VLCFA), reduce mitochondrial membrane potential (ΔΨm), matrix NAD(P)H pool, Ca2+ retention capacity and ATP generation in the rat heart. They also cause uncoupling of oxidative phosphorylation (OXPHOS) and induce mitochondrial permeability transition (MPT) pore opening. These data support a severe damage in heart mitochondrial bioenergetics caused by these compounds.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/febs.14419</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2018-04, Vol.285 (8), p.1437-1455
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2007980016
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Accumulation
Adenine
Adenosine diphosphate
Adenosine triphosphate
Bioenergetics
Calcium (mitochondrial)
Calcium homeostasis
Calcium influx
Calcium ions
Carbonyls
Cardiomyocytes
Chains
cis‐5‐tetradecenoic acid
Cyanides
Cyclosporin A
Fatty acids
Heart
Heart diseases
Homeostasis
Hydrazine
Inhibitors
Membrane permeability
Membrane potential
Mitochondria
mitochondrial Ca2+ homeostasis
Mitochondrial DNA
mitochondrial energy homeostasis
myristic acid
NAD
Oxidative phosphorylation
Phosphorylation
Respiration
Retention capacity
Ruthenium
Ruthenium red
Uncouplers
very long‐chain acyl‐CoA dehydrogenase
title Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolite%20accumulation%20in%20VLCAD%20deficiency%20markedly%20disrupts%20mitochondrial%20bioenergetics%20and%20Ca2+%20homeostasis%20in%20the%20heart&rft.jtitle=The%20FEBS%20journal&rft.au=Cecatto,%20Cristiane&rft.date=2018-04&rft.volume=285&rft.issue=8&rft.spage=1437&rft.epage=1455&rft.pages=1437-1455&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14419&rft_dat=%3Cproquest_wiley%3E2007980016%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2028824521&rft_id=info:pmid/&rfr_iscdi=true