Structure and mechanogating mechanism of the Piezo1 channel
The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduct...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-02, Vol.554 (7693), p.487-492 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 7693 |
container_start_page | 487 |
container_title | Nature (London) |
container_volume | 554 |
creator | Zhao, Qiancheng Zhou, Heng Chi, Shaopeng Wang, Yanfeng Wang, Jianhua Geng, Jie Wu, Kun Liu, Wenhao Zhang, Tingxin Dong, Meng-Qiu Wang, Jiawei Li, Xueming Xiao, Bailong |
description | The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each—which we term transmembrane helical units (THUs)—which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90?Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.
The electron cryo-microscopy structure of full-length mouse Piezo1 reveals unique topological features such as the repetitive transmembrane helical units that constitute the highly curved transmembrane region, and identifies regions and single residues that are crucial for the mechanical activation of the channel.
Structure and mechanism of ion channel Piezo1
Mechanosensitive cation channels convert external mechanical stimuli into various biological actions, including touch, hearing, balance and cardiovascular regulation. The eukaryotic Piezo proteins are mechanotransduction channels, although their structure and gating mechanisms are not well elucidated. In related papers in this issue of
Nature
, two groups report cryo-electron microscopy structures of the full-length mouse Piezo1 and reveal three flexible propeller blades. Each blade is made up of at least 26 helices, forming a series of helical bundles, which adopt a curved transmembrane region. A kinked beam and anchor domain link these Piezo repeats to the pore, giving clues as to how the channel responds to membrane tension and mechanical force. |
doi_str_mv | 10.1038/nature25743 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007425407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A528459919</galeid><sourcerecordid>A528459919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5373-7a20a2bea5dc426ef67e8aaaafa929534b5f269c29bb9af683f77b49e9cba0903</originalsourceid><addsrcrecordid>eNp10s1vFCEYB2BiNHatnrybiV40OpVh-BjiabPxo0mjxtZ4JAz7MqWZgS3MJK1_vaxdbdeMcCC8PPxCyIvQ0wofVbhu3no9ThEIE7S-hxYVFbykvBH30QJj0pS4qfkBepTSBcaYVYI-RAdEUi6xJAv07nSMk9kGFNqviwHMufah06Pz3W7n0lAEW4znUHx18DNUxbbqoX-MHljdJ3iyWw_R9w_vz1afypMvH49Xy5PSsFrUpdAEa9KCZmtDCQfLBTQ6D6slkaymLbOES0Nk20pteVNbIVoqQZpWY4nrQ_TyJncTw-UEaVSDSwb6XnsIU1IEY0EJo1hk-uIfehGm6PPrfiveVITyW9XpHpTzNoxRm22oWjLSUCZlJbMqZ1QHHqLugwfrcnnPP5_xZuMu1V10NIPyXMPgzGzqq70L2YxwNXZ6Skkdn37bt6__b5dnP1afZ7WJIaUIVm2iG3S8VhVW285Sdzor62e7n53aAdZ_7Z9WyuDNDUj5yHcQb79-Lu8Xo6nTWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007681246</pqid></control><display><type>article</type><title>Structure and mechanogating mechanism of the Piezo1 channel</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhao, Qiancheng ; Zhou, Heng ; Chi, Shaopeng ; Wang, Yanfeng ; Wang, Jianhua ; Geng, Jie ; Wu, Kun ; Liu, Wenhao ; Zhang, Tingxin ; Dong, Meng-Qiu ; Wang, Jiawei ; Li, Xueming ; Xiao, Bailong</creator><creatorcontrib>Zhao, Qiancheng ; Zhou, Heng ; Chi, Shaopeng ; Wang, Yanfeng ; Wang, Jianhua ; Geng, Jie ; Wu, Kun ; Liu, Wenhao ; Zhang, Tingxin ; Dong, Meng-Qiu ; Wang, Jiawei ; Li, Xueming ; Xiao, Bailong</creatorcontrib><description>The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each—which we term transmembrane helical units (THUs)—which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90?Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.
The electron cryo-microscopy structure of full-length mouse Piezo1 reveals unique topological features such as the repetitive transmembrane helical units that constitute the highly curved transmembrane region, and identifies regions and single residues that are crucial for the mechanical activation of the channel.
Structure and mechanism of ion channel Piezo1
Mechanosensitive cation channels convert external mechanical stimuli into various biological actions, including touch, hearing, balance and cardiovascular regulation. The eukaryotic Piezo proteins are mechanotransduction channels, although their structure and gating mechanisms are not well elucidated. In related papers in this issue of
Nature
, two groups report cryo-electron microscopy structures of the full-length mouse Piezo1 and reveal three flexible propeller blades. Each blade is made up of at least 26 helices, forming a series of helical bundles, which adopt a curved transmembrane region. A kinked beam and anchor domain link these Piezo repeats to the pore, giving clues as to how the channel responds to membrane tension and mechanical force.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25743</identifier><identifier>PMID: 29469092</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 14 ; 631/378/2586 ; 631/535/1258/1259 ; 82 ; 82/80 ; 82/83 ; 9/74 ; Data collection ; Helices ; Humanities and Social Sciences ; Hydrophobicity ; Interfaces ; Intracellular ; Ion channels ; Mechanotransduction ; Microscopy ; multidisciplinary ; Observations ; Physiological aspects ; Protein structure ; Proteins ; Residues ; Science ; Topology</subject><ispartof>Nature (London), 2018-02, Vol.554 (7693), p.487-492</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 22, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5373-7a20a2bea5dc426ef67e8aaaafa929534b5f269c29bb9af683f77b49e9cba0903</citedby><cites>FETCH-LOGICAL-c5373-7a20a2bea5dc426ef67e8aaaafa929534b5f269c29bb9af683f77b49e9cba0903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25743$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25743$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29469092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Zhou, Heng</creatorcontrib><creatorcontrib>Chi, Shaopeng</creatorcontrib><creatorcontrib>Wang, Yanfeng</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Geng, Jie</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Liu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Tingxin</creatorcontrib><creatorcontrib>Dong, Meng-Qiu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Li, Xueming</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><title>Structure and mechanogating mechanism of the Piezo1 channel</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each—which we term transmembrane helical units (THUs)—which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90?Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.
The electron cryo-microscopy structure of full-length mouse Piezo1 reveals unique topological features such as the repetitive transmembrane helical units that constitute the highly curved transmembrane region, and identifies regions and single residues that are crucial for the mechanical activation of the channel.
Structure and mechanism of ion channel Piezo1
Mechanosensitive cation channels convert external mechanical stimuli into various biological actions, including touch, hearing, balance and cardiovascular regulation. The eukaryotic Piezo proteins are mechanotransduction channels, although their structure and gating mechanisms are not well elucidated. In related papers in this issue of
Nature
, two groups report cryo-electron microscopy structures of the full-length mouse Piezo1 and reveal three flexible propeller blades. Each blade is made up of at least 26 helices, forming a series of helical bundles, which adopt a curved transmembrane region. A kinked beam and anchor domain link these Piezo repeats to the pore, giving clues as to how the channel responds to membrane tension and mechanical force.</description><subject>101/28</subject><subject>14</subject><subject>631/378/2586</subject><subject>631/535/1258/1259</subject><subject>82</subject><subject>82/80</subject><subject>82/83</subject><subject>9/74</subject><subject>Data collection</subject><subject>Helices</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>Intracellular</subject><subject>Ion channels</subject><subject>Mechanotransduction</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Residues</subject><subject>Science</subject><subject>Topology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s1vFCEYB2BiNHatnrybiV40OpVh-BjiabPxo0mjxtZ4JAz7MqWZgS3MJK1_vaxdbdeMcCC8PPxCyIvQ0wofVbhu3no9ThEIE7S-hxYVFbykvBH30QJj0pS4qfkBepTSBcaYVYI-RAdEUi6xJAv07nSMk9kGFNqviwHMufah06Pz3W7n0lAEW4znUHx18DNUxbbqoX-MHljdJ3iyWw_R9w_vz1afypMvH49Xy5PSsFrUpdAEa9KCZmtDCQfLBTQ6D6slkaymLbOES0Nk20pteVNbIVoqQZpWY4nrQ_TyJncTw-UEaVSDSwb6XnsIU1IEY0EJo1hk-uIfehGm6PPrfiveVITyW9XpHpTzNoxRm22oWjLSUCZlJbMqZ1QHHqLugwfrcnnPP5_xZuMu1V10NIPyXMPgzGzqq70L2YxwNXZ6Skkdn37bt6__b5dnP1afZ7WJIaUIVm2iG3S8VhVW285Sdzor62e7n53aAdZ_7Z9WyuDNDUj5yHcQb79-Lu8Xo6nTWA</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Zhao, Qiancheng</creator><creator>Zhou, Heng</creator><creator>Chi, Shaopeng</creator><creator>Wang, Yanfeng</creator><creator>Wang, Jianhua</creator><creator>Geng, Jie</creator><creator>Wu, Kun</creator><creator>Liu, Wenhao</creator><creator>Zhang, Tingxin</creator><creator>Dong, Meng-Qiu</creator><creator>Wang, Jiawei</creator><creator>Li, Xueming</creator><creator>Xiao, Bailong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180222</creationdate><title>Structure and mechanogating mechanism of the Piezo1 channel</title><author>Zhao, Qiancheng ; Zhou, Heng ; Chi, Shaopeng ; Wang, Yanfeng ; Wang, Jianhua ; Geng, Jie ; Wu, Kun ; Liu, Wenhao ; Zhang, Tingxin ; Dong, Meng-Qiu ; Wang, Jiawei ; Li, Xueming ; Xiao, Bailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5373-7a20a2bea5dc426ef67e8aaaafa929534b5f269c29bb9af683f77b49e9cba0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/28</topic><topic>14</topic><topic>631/378/2586</topic><topic>631/535/1258/1259</topic><topic>82</topic><topic>82/80</topic><topic>82/83</topic><topic>9/74</topic><topic>Data collection</topic><topic>Helices</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>Intracellular</topic><topic>Ion channels</topic><topic>Mechanotransduction</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Residues</topic><topic>Science</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Zhou, Heng</creatorcontrib><creatorcontrib>Chi, Shaopeng</creatorcontrib><creatorcontrib>Wang, Yanfeng</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><creatorcontrib>Geng, Jie</creatorcontrib><creatorcontrib>Wu, Kun</creatorcontrib><creatorcontrib>Liu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Tingxin</creatorcontrib><creatorcontrib>Dong, Meng-Qiu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Li, Xueming</creatorcontrib><creatorcontrib>Xiao, Bailong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qiancheng</au><au>Zhou, Heng</au><au>Chi, Shaopeng</au><au>Wang, Yanfeng</au><au>Wang, Jianhua</au><au>Geng, Jie</au><au>Wu, Kun</au><au>Liu, Wenhao</au><au>Zhang, Tingxin</au><au>Dong, Meng-Qiu</au><au>Wang, Jiawei</au><au>Li, Xueming</au><au>Xiao, Bailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanogating mechanism of the Piezo1 channel</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-02-22</date><risdate>2018</risdate><volume>554</volume><issue>7693</issue><spage>487</spage><epage>492</epage><pages>487-492</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each—which we term transmembrane helical units (THUs)—which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90?Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.
The electron cryo-microscopy structure of full-length mouse Piezo1 reveals unique topological features such as the repetitive transmembrane helical units that constitute the highly curved transmembrane region, and identifies regions and single residues that are crucial for the mechanical activation of the channel.
Structure and mechanism of ion channel Piezo1
Mechanosensitive cation channels convert external mechanical stimuli into various biological actions, including touch, hearing, balance and cardiovascular regulation. The eukaryotic Piezo proteins are mechanotransduction channels, although their structure and gating mechanisms are not well elucidated. In related papers in this issue of
Nature
, two groups report cryo-electron microscopy structures of the full-length mouse Piezo1 and reveal three flexible propeller blades. Each blade is made up of at least 26 helices, forming a series of helical bundles, which adopt a curved transmembrane region. A kinked beam and anchor domain link these Piezo repeats to the pore, giving clues as to how the channel responds to membrane tension and mechanical force.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29469092</pmid><doi>10.1038/nature25743</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-02, Vol.554 (7693), p.487-492 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2007425407 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 101/28 14 631/378/2586 631/535/1258/1259 82 82/80 82/83 9/74 Data collection Helices Humanities and Social Sciences Hydrophobicity Interfaces Intracellular Ion channels Mechanotransduction Microscopy multidisciplinary Observations Physiological aspects Protein structure Proteins Residues Science Topology |
title | Structure and mechanogating mechanism of the Piezo1 channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanogating%20mechanism%20of%20the%20Piezo1%20channel&rft.jtitle=Nature%20(London)&rft.au=Zhao,%20Qiancheng&rft.date=2018-02-22&rft.volume=554&rft.issue=7693&rft.spage=487&rft.epage=492&rft.pages=487-492&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25743&rft_dat=%3Cgale_proqu%3EA528459919%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007681246&rft_id=info:pmid/29469092&rft_galeid=A528459919&rfr_iscdi=true |