Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime

In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-05, Vol.25 (13), p.12612-12618
Hauptverfasser: Kaya, Cengiz, Ashraf, Muhammad, Akram, Nudrat Aisha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12618
container_issue 13
container_start_page 12612
container_title Environmental science and pollution research international
container_volume 25
creator Kaya, Cengiz
Ashraf, Muhammad
Akram, Nudrat Aisha
description In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.
doi_str_mv 10.1007/s11356-018-1510-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007423077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006983900</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokPhAdggS2zKIsV_GdtLNAKKNBIbWEeJcz3jksTB16k6fTIeD4cpQmJhncX5dHR8DyGvObvmjOn3yLmstxXjpuI1Z5V5QjZ8y1WllbVPyYZZpSoulbogLxBvGRPMCv2cXAirtkZasSG_bk59igeYKC6DDz3QBIdlaDMgzUegA9zBgDR6-gNOdITcdnEIq9tOfXk5xPvQF6U9eJgQKJ4ww0hzpC4uU4bUukz_QDncFTsnQKRhojPMMyR6tWtnDG4ZS9q0FNlfv6PzUCKRwv0cEfo17BgOR_oQJrcWDCO8JM98OyC8etRL8v3Tx2-7m2r_9fOX3Yd9NQsuclV3SrWSlb8a4Xsnaiu1F9ppaZz3zmvXOd3Jcj0JvPPcGAtWeS1M3Rtnt_KSXJ1z5xR_LoC5GQM6GEpBiAs2ogyhhGRaF_Ttf-htXNJU2q3U1paLM1aoN4_U0o3QN3MKY5tOzd9NCiDOABZrOkD6F8NZsw7fnIdvyvDNOnxj5G_12aGG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006983900</pqid></control><display><type>article</type><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</creator><creatorcontrib>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</creatorcontrib><description>In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-1510-8</identifier><identifier>PMID: 29468392</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antioxidants ; Antioxidants - metabolism ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Capsicum - drug effects ; Capsicum - growth &amp; development ; Capsicum - metabolism ; Capsicum annuum ; Catalase ; Chlorophyll ; Chlorophyll - metabolism ; Crop yield ; Dry matter ; Earth and Environmental Science ; Ecotoxicology ; Electrolyte leakage ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Enzymes ; Essential nutrients ; Factorial experiments ; Fluorescence ; Fruits ; Hydrogen ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Hydrogen sulfide ; Hydrogen Sulfide - pharmacology ; Iron ; Leaves ; Low level ; Malondialdehyde ; Metabolites ; Moisture content ; Nitrogen ; Nutrients ; Organs ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidizing agents ; Peppers ; Peroxidase ; Phosphorus ; Pigments ; Plant growth ; Proline ; Research Article ; Root zone ; Sodium ; Soil Pollutants - toxicity ; Sulfides ; Superoxide dismutase ; Vegetables ; Waste Water Technology ; Water content ; Water Management ; Water Pollution Control ; Zinc ; Zinc - toxicity</subject><ispartof>Environmental science and pollution research international, 2018-05, Vol.25 (13), p.12612-12618</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-1510-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-1510-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29468392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaya, Cengiz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Akram, Nudrat Aisha</creatorcontrib><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</description><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Capsicum - drug effects</subject><subject>Capsicum - growth &amp; development</subject><subject>Capsicum - metabolism</subject><subject>Capsicum annuum</subject><subject>Catalase</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Crop yield</subject><subject>Dry matter</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electrolyte leakage</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Essential nutrients</subject><subject>Factorial experiments</subject><subject>Fluorescence</subject><subject>Fruits</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Iron</subject><subject>Leaves</subject><subject>Low level</subject><subject>Malondialdehyde</subject><subject>Metabolites</subject><subject>Moisture content</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidizing agents</subject><subject>Peppers</subject><subject>Peroxidase</subject><subject>Phosphorus</subject><subject>Pigments</subject><subject>Plant growth</subject><subject>Proline</subject><subject>Research Article</subject><subject>Root zone</subject><subject>Sodium</subject><subject>Soil Pollutants - toxicity</subject><subject>Sulfides</subject><subject>Superoxide dismutase</subject><subject>Vegetables</subject><subject>Waste Water Technology</subject><subject>Water content</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Zinc</subject><subject>Zinc - toxicity</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1u1DAUhS0EokPhAdggS2zKIsV_GdtLNAKKNBIbWEeJcz3jksTB16k6fTIeD4cpQmJhncX5dHR8DyGvObvmjOn3yLmstxXjpuI1Z5V5QjZ8y1WllbVPyYZZpSoulbogLxBvGRPMCv2cXAirtkZasSG_bk59igeYKC6DDz3QBIdlaDMgzUegA9zBgDR6-gNOdITcdnEIq9tOfXk5xPvQF6U9eJgQKJ4ww0hzpC4uU4bUukz_QDncFTsnQKRhojPMMyR6tWtnDG4ZS9q0FNlfv6PzUCKRwv0cEfo17BgOR_oQJrcWDCO8JM98OyC8etRL8v3Tx2-7m2r_9fOX3Yd9NQsuclV3SrWSlb8a4Xsnaiu1F9ppaZz3zmvXOd3Jcj0JvPPcGAtWeS1M3Rtnt_KSXJ1z5xR_LoC5GQM6GEpBiAs2ogyhhGRaF_Ttf-htXNJU2q3U1paLM1aoN4_U0o3QN3MKY5tOzd9NCiDOABZrOkD6F8NZsw7fnIdvyvDNOnxj5G_12aGG</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Kaya, Cengiz</creator><creator>Ashraf, Muhammad</creator><creator>Akram, Nudrat Aisha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><author>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Capsicum - drug effects</topic><topic>Capsicum - growth &amp; development</topic><topic>Capsicum - metabolism</topic><topic>Capsicum annuum</topic><topic>Catalase</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Crop yield</topic><topic>Dry matter</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electrolyte leakage</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Essential nutrients</topic><topic>Factorial experiments</topic><topic>Fluorescence</topic><topic>Fruits</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Iron</topic><topic>Leaves</topic><topic>Low level</topic><topic>Malondialdehyde</topic><topic>Metabolites</topic><topic>Moisture content</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidizing agents</topic><topic>Peppers</topic><topic>Peroxidase</topic><topic>Phosphorus</topic><topic>Pigments</topic><topic>Plant growth</topic><topic>Proline</topic><topic>Research Article</topic><topic>Root zone</topic><topic>Sodium</topic><topic>Soil Pollutants - toxicity</topic><topic>Sulfides</topic><topic>Superoxide dismutase</topic><topic>Vegetables</topic><topic>Waste Water Technology</topic><topic>Water content</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Zinc</topic><topic>Zinc - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Cengiz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Akram, Nudrat Aisha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaya, Cengiz</au><au>Ashraf, Muhammad</au><au>Akram, Nudrat Aisha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>25</volume><issue>13</issue><spage>12612</spage><epage>12618</epage><pages>12612-12618</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29468392</pmid><doi>10.1007/s11356-018-1510-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2018-05, Vol.25 (13), p.12612-12618
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2007423077
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Antioxidants
Antioxidants - metabolism
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Capsicum - drug effects
Capsicum - growth & development
Capsicum - metabolism
Capsicum annuum
Catalase
Chlorophyll
Chlorophyll - metabolism
Crop yield
Dry matter
Earth and Environmental Science
Ecotoxicology
Electrolyte leakage
Environment
Environmental Chemistry
Environmental Health
Environmental science
Enzymes
Essential nutrients
Factorial experiments
Fluorescence
Fruits
Hydrogen
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Hydrogen sulfide
Hydrogen Sulfide - pharmacology
Iron
Leaves
Low level
Malondialdehyde
Metabolites
Moisture content
Nitrogen
Nutrients
Organs
Oxidative stress
Oxidative Stress - drug effects
Oxidizing agents
Peppers
Peroxidase
Phosphorus
Pigments
Plant growth
Proline
Research Article
Root zone
Sodium
Soil Pollutants - toxicity
Sulfides
Superoxide dismutase
Vegetables
Waste Water Technology
Water content
Water Management
Water Pollution Control
Zinc
Zinc - toxicity
title Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20sulfide%20regulates%20the%20levels%20of%20key%20metabolites%20and%20antioxidant%20defense%20system%20to%20counteract%20oxidative%20stress%20in%20pepper%20(Capsicum%20annuum%20L.)%20plants%20exposed%20to%20high%20zinc%20regime&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Kaya,%20Cengiz&rft.date=2018-05-01&rft.volume=25&rft.issue=13&rft.spage=12612&rft.epage=12618&rft.pages=12612-12618&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-1510-8&rft_dat=%3Cproquest_pubme%3E2006983900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006983900&rft_id=info:pmid/29468392&rfr_iscdi=true