Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime
In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper ( Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial exper...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2018-05, Vol.25 (13), p.12612-12618 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12618 |
---|---|
container_issue | 13 |
container_start_page | 12612 |
container_title | Environmental science and pollution research international |
container_volume | 25 |
creator | Kaya, Cengiz Ashraf, Muhammad Akram, Nudrat Aisha |
description | In the present experiment, we aimed to test the impact of hydrogen sulfide (H
2
S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (
Capsicum annuum
L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H
2
S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H
2
O
2
), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H
2
S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H
2
S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H
2
O
2
contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H
2
O
2
, Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants. |
doi_str_mv | 10.1007/s11356-018-1510-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007423077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006983900</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokPhAdggS2zKIsV_GdtLNAKKNBIbWEeJcz3jksTB16k6fTIeD4cpQmJhncX5dHR8DyGvObvmjOn3yLmstxXjpuI1Z5V5QjZ8y1WllbVPyYZZpSoulbogLxBvGRPMCv2cXAirtkZasSG_bk59igeYKC6DDz3QBIdlaDMgzUegA9zBgDR6-gNOdITcdnEIq9tOfXk5xPvQF6U9eJgQKJ4ww0hzpC4uU4bUukz_QDncFTsnQKRhojPMMyR6tWtnDG4ZS9q0FNlfv6PzUCKRwv0cEfo17BgOR_oQJrcWDCO8JM98OyC8etRL8v3Tx2-7m2r_9fOX3Yd9NQsuclV3SrWSlb8a4Xsnaiu1F9ppaZz3zmvXOd3Jcj0JvPPcGAtWeS1M3Rtnt_KSXJ1z5xR_LoC5GQM6GEpBiAs2ogyhhGRaF_Ttf-htXNJU2q3U1paLM1aoN4_U0o3QN3MKY5tOzd9NCiDOABZrOkD6F8NZsw7fnIdvyvDNOnxj5G_12aGG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006983900</pqid></control><display><type>article</type><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</creator><creatorcontrib>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</creatorcontrib><description>In the present experiment, we aimed to test the impact of hydrogen sulfide (H
2
S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (
Capsicum annuum
L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H
2
S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H
2
O
2
), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H
2
S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H
2
S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H
2
O
2
contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H
2
O
2
, Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-018-1510-8</identifier><identifier>PMID: 29468392</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antioxidants ; Antioxidants - metabolism ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Capsicum - drug effects ; Capsicum - growth & development ; Capsicum - metabolism ; Capsicum annuum ; Catalase ; Chlorophyll ; Chlorophyll - metabolism ; Crop yield ; Dry matter ; Earth and Environmental Science ; Ecotoxicology ; Electrolyte leakage ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Enzymes ; Essential nutrients ; Factorial experiments ; Fluorescence ; Fruits ; Hydrogen ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Hydrogen sulfide ; Hydrogen Sulfide - pharmacology ; Iron ; Leaves ; Low level ; Malondialdehyde ; Metabolites ; Moisture content ; Nitrogen ; Nutrients ; Organs ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidizing agents ; Peppers ; Peroxidase ; Phosphorus ; Pigments ; Plant growth ; Proline ; Research Article ; Root zone ; Sodium ; Soil Pollutants - toxicity ; Sulfides ; Superoxide dismutase ; Vegetables ; Waste Water Technology ; Water content ; Water Management ; Water Pollution Control ; Zinc ; Zinc - toxicity</subject><ispartof>Environmental science and pollution research international, 2018-05, Vol.25 (13), p.12612-12618</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-018-1510-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-018-1510-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29468392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaya, Cengiz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Akram, Nudrat Aisha</creatorcontrib><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In the present experiment, we aimed to test the impact of hydrogen sulfide (H
2
S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (
Capsicum annuum
L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H
2
S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H
2
O
2
), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H
2
S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H
2
S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H
2
O
2
contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H
2
O
2
, Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</description><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Capsicum - drug effects</subject><subject>Capsicum - growth & development</subject><subject>Capsicum - metabolism</subject><subject>Capsicum annuum</subject><subject>Catalase</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Crop yield</subject><subject>Dry matter</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electrolyte leakage</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Essential nutrients</subject><subject>Factorial experiments</subject><subject>Fluorescence</subject><subject>Fruits</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - pharmacology</subject><subject>Iron</subject><subject>Leaves</subject><subject>Low level</subject><subject>Malondialdehyde</subject><subject>Metabolites</subject><subject>Moisture content</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidizing agents</subject><subject>Peppers</subject><subject>Peroxidase</subject><subject>Phosphorus</subject><subject>Pigments</subject><subject>Plant growth</subject><subject>Proline</subject><subject>Research Article</subject><subject>Root zone</subject><subject>Sodium</subject><subject>Soil Pollutants - toxicity</subject><subject>Sulfides</subject><subject>Superoxide dismutase</subject><subject>Vegetables</subject><subject>Waste Water Technology</subject><subject>Water content</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Zinc</subject><subject>Zinc - toxicity</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc1u1DAUhS0EokPhAdggS2zKIsV_GdtLNAKKNBIbWEeJcz3jksTB16k6fTIeD4cpQmJhncX5dHR8DyGvObvmjOn3yLmstxXjpuI1Z5V5QjZ8y1WllbVPyYZZpSoulbogLxBvGRPMCv2cXAirtkZasSG_bk59igeYKC6DDz3QBIdlaDMgzUegA9zBgDR6-gNOdITcdnEIq9tOfXk5xPvQF6U9eJgQKJ4ww0hzpC4uU4bUukz_QDncFTsnQKRhojPMMyR6tWtnDG4ZS9q0FNlfv6PzUCKRwv0cEfo17BgOR_oQJrcWDCO8JM98OyC8etRL8v3Tx2-7m2r_9fOX3Yd9NQsuclV3SrWSlb8a4Xsnaiu1F9ppaZz3zmvXOd3Jcj0JvPPcGAtWeS1M3Rtnt_KSXJ1z5xR_LoC5GQM6GEpBiAs2ogyhhGRaF_Ttf-htXNJU2q3U1paLM1aoN4_U0o3QN3MKY5tOzd9NCiDOABZrOkD6F8NZsw7fnIdvyvDNOnxj5G_12aGG</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Kaya, Cengiz</creator><creator>Ashraf, Muhammad</creator><creator>Akram, Nudrat Aisha</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</title><author>Kaya, Cengiz ; Ashraf, Muhammad ; Akram, Nudrat Aisha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-5b44a3039282fdc25937f27c738cffcf7cbc7b35103e1bf1889e94f7285d8c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Capsicum - drug effects</topic><topic>Capsicum - growth & development</topic><topic>Capsicum - metabolism</topic><topic>Capsicum annuum</topic><topic>Catalase</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Crop yield</topic><topic>Dry matter</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electrolyte leakage</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Essential nutrients</topic><topic>Factorial experiments</topic><topic>Fluorescence</topic><topic>Fruits</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - pharmacology</topic><topic>Iron</topic><topic>Leaves</topic><topic>Low level</topic><topic>Malondialdehyde</topic><topic>Metabolites</topic><topic>Moisture content</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidizing agents</topic><topic>Peppers</topic><topic>Peroxidase</topic><topic>Phosphorus</topic><topic>Pigments</topic><topic>Plant growth</topic><topic>Proline</topic><topic>Research Article</topic><topic>Root zone</topic><topic>Sodium</topic><topic>Soil Pollutants - toxicity</topic><topic>Sulfides</topic><topic>Superoxide dismutase</topic><topic>Vegetables</topic><topic>Waste Water Technology</topic><topic>Water content</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Zinc</topic><topic>Zinc - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Cengiz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Akram, Nudrat Aisha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaya, Cengiz</au><au>Ashraf, Muhammad</au><au>Akram, Nudrat Aisha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>25</volume><issue>13</issue><spage>12612</spage><epage>12618</epage><pages>12612-12618</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In the present experiment, we aimed to test the impact of hydrogen sulfide (H
2
S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (
Capsicum annuum
L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H
2
S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H
2
O
2
), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H
2
S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H
2
S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H
2
O
2
contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H
2
O
2
, Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29468392</pmid><doi>10.1007/s11356-018-1510-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2018-05, Vol.25 (13), p.12612-12618 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2007423077 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Antioxidants Antioxidants - metabolism Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Capsicum - drug effects Capsicum - growth & development Capsicum - metabolism Capsicum annuum Catalase Chlorophyll Chlorophyll - metabolism Crop yield Dry matter Earth and Environmental Science Ecotoxicology Electrolyte leakage Environment Environmental Chemistry Environmental Health Environmental science Enzymes Essential nutrients Factorial experiments Fluorescence Fruits Hydrogen Hydrogen peroxide Hydrogen Peroxide - metabolism Hydrogen sulfide Hydrogen Sulfide - pharmacology Iron Leaves Low level Malondialdehyde Metabolites Moisture content Nitrogen Nutrients Organs Oxidative stress Oxidative Stress - drug effects Oxidizing agents Peppers Peroxidase Phosphorus Pigments Plant growth Proline Research Article Root zone Sodium Soil Pollutants - toxicity Sulfides Superoxide dismutase Vegetables Waste Water Technology Water content Water Management Water Pollution Control Zinc Zinc - toxicity |
title | Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20sulfide%20regulates%20the%20levels%20of%20key%20metabolites%20and%20antioxidant%20defense%20system%20to%20counteract%20oxidative%20stress%20in%20pepper%20(Capsicum%20annuum%20L.)%20plants%20exposed%20to%20high%20zinc%20regime&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Kaya,%20Cengiz&rft.date=2018-05-01&rft.volume=25&rft.issue=13&rft.spage=12612&rft.epage=12618&rft.pages=12612-12618&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-018-1510-8&rft_dat=%3Cproquest_pubme%3E2006983900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006983900&rft_id=info:pmid/29468392&rfr_iscdi=true |