Evaluating YieldTracker Forecasts for Maize in Western Kansas

We seek to predict in‐season land productivity to guide irrigation management decisions designed to optimize water utilization in the Ogallala Aquifer region. YieldTracker is a mathematical model that simulates growth and yield of graminoid crops using weather and leaf area index (LAI) as inputs, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2009-05, Vol.101 (3), p.671-680
Hauptverfasser: Coyne, P. I., Aiken, R. M., Maas, S. J., Lamm, F. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 3
container_start_page 671
container_title Agronomy journal
container_volume 101
creator Coyne, P. I.
Aiken, R. M.
Maas, S. J.
Lamm, F. R.
description We seek to predict in‐season land productivity to guide irrigation management decisions designed to optimize water utilization in the Ogallala Aquifer region. YieldTracker is a mathematical model that simulates growth and yield of graminoid crops using weather and leaf area index (LAI) as inputs, where LAI can be derived by remote sensing. We tested this model using 3 yr of maize (Zea mays L.) yield data from Colby, KS. Four replications of three treatments—rainfed and subsurface drip irrigation (SDI) at 3.8 and 7.6 mm d−1—were compared with simulated yields (36 model runs). Results indicated that YieldTracker has potential as a decision aid for managing irrigated maize, but has insufficient mechanistic complexity to simulate yields of water‐stressed maize. YieldTracker projected canopy development well, but LAI does not necessarily correlate with canopy efficiency in capturing solar radiation and converting it to biomass and then partitioning biomass to grain under conditions of limiting soil water. Remotely sensed normalized difference vegetation index (NDVI), a surrogate for LAI, tends to saturate at LAI > 3. Using hyperspectral reflectance data, we found a total chlorophyll vegetation index (TCI) responded nearly linearly to LAI values as high as 6. Similarly, a simple ratio vegetation index, based on a narrow band of wavelengths in the red edge spectral region, responded linearly to increasing LAI. Water band indices (WBI) in the 900 to 970 nm waveband were sensitive to changes in TCI as available soil water decreased. Incorporating TCI and a WBI might improve YieldTracker performance across a range of soil water conditions.
doi_str_mv 10.2134/agronj2008.0146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20072337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042247611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-cbd87ffeadbf315a4d907656efeb7534cf438485e0bce69c0815d4f3e8fd85d83</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFbPXoOgt7T7lc3mIFJKW63VglTE07LZzJbUmNTdRql_vaktCl48DQy_9-bNQ-iU4A4ljHf13FXlgmIsO5hwsYdahLMoxIJH-6iFMaYhSQQ9REfeLzAmJOGkhS4H77qo9Sov58FzDkU2c9q8gAuGlQOj_coHtnLBnc4_IcjL4An8ClwZ3OrSa3-MDqwuPJzsZhs9Dgez_nU4mY5u-r1JaDjFIjRpJmNrQWepZSTSPEtwLCIBFtI4YtxYziSXEeDUgEgMliTKuGUgbSajTLI2utj6Ll31VjcR1GvuDRSFLqGqvWq-jiljcQOe_QEXVe3KJptiTEiGScwbqLuFjKu8d2DV0uWv2q0VwWrTpfrtUm26bBTnO1vtjS6s06XJ_Y-MEh4zKWjDXW25j7yA9X-2qjca097oYXo_3uy-L30BsuyH4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>336830174</pqid></control><display><type>article</type><title>Evaluating YieldTracker Forecasts for Maize in Western Kansas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Coyne, P. I. ; Aiken, R. M. ; Maas, S. J. ; Lamm, F. R.</creator><creatorcontrib>Coyne, P. I. ; Aiken, R. M. ; Maas, S. J. ; Lamm, F. R.</creatorcontrib><description>We seek to predict in‐season land productivity to guide irrigation management decisions designed to optimize water utilization in the Ogallala Aquifer region. YieldTracker is a mathematical model that simulates growth and yield of graminoid crops using weather and leaf area index (LAI) as inputs, where LAI can be derived by remote sensing. We tested this model using 3 yr of maize (Zea mays L.) yield data from Colby, KS. Four replications of three treatments—rainfed and subsurface drip irrigation (SDI) at 3.8 and 7.6 mm d−1—were compared with simulated yields (36 model runs). Results indicated that YieldTracker has potential as a decision aid for managing irrigated maize, but has insufficient mechanistic complexity to simulate yields of water‐stressed maize. YieldTracker projected canopy development well, but LAI does not necessarily correlate with canopy efficiency in capturing solar radiation and converting it to biomass and then partitioning biomass to grain under conditions of limiting soil water. Remotely sensed normalized difference vegetation index (NDVI), a surrogate for LAI, tends to saturate at LAI &gt; 3. Using hyperspectral reflectance data, we found a total chlorophyll vegetation index (TCI) responded nearly linearly to LAI values as high as 6. Similarly, a simple ratio vegetation index, based on a narrow band of wavelengths in the red edge spectral region, responded linearly to increasing LAI. Water band indices (WBI) in the 900 to 970 nm waveband were sensitive to changes in TCI as available soil water decreased. Incorporating TCI and a WBI might improve YieldTracker performance across a range of soil water conditions.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.2134/agronj2008.0146</identifier><identifier>CODEN: AGJOAT</identifier><language>eng</language><publisher>Madison: American Society of Agronomy</publisher><subject>Agronomy. Soil science and plant productions ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Zea mays</subject><ispartof>Agronomy journal, 2009-05, Vol.101 (3), p.671-680</ispartof><rights>Copyright © 2009 by the American Society of Agronomy</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Society of Agronomy May/Jun 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-cbd87ffeadbf315a4d907656efeb7534cf438485e0bce69c0815d4f3e8fd85d83</citedby><cites>FETCH-LOGICAL-c4206-cbd87ffeadbf315a4d907656efeb7534cf438485e0bce69c0815d4f3e8fd85d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fagronj2008.0146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fagronj2008.0146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21473862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coyne, P. I.</creatorcontrib><creatorcontrib>Aiken, R. M.</creatorcontrib><creatorcontrib>Maas, S. J.</creatorcontrib><creatorcontrib>Lamm, F. R.</creatorcontrib><title>Evaluating YieldTracker Forecasts for Maize in Western Kansas</title><title>Agronomy journal</title><description>We seek to predict in‐season land productivity to guide irrigation management decisions designed to optimize water utilization in the Ogallala Aquifer region. YieldTracker is a mathematical model that simulates growth and yield of graminoid crops using weather and leaf area index (LAI) as inputs, where LAI can be derived by remote sensing. We tested this model using 3 yr of maize (Zea mays L.) yield data from Colby, KS. Four replications of three treatments—rainfed and subsurface drip irrigation (SDI) at 3.8 and 7.6 mm d−1—were compared with simulated yields (36 model runs). Results indicated that YieldTracker has potential as a decision aid for managing irrigated maize, but has insufficient mechanistic complexity to simulate yields of water‐stressed maize. YieldTracker projected canopy development well, but LAI does not necessarily correlate with canopy efficiency in capturing solar radiation and converting it to biomass and then partitioning biomass to grain under conditions of limiting soil water. Remotely sensed normalized difference vegetation index (NDVI), a surrogate for LAI, tends to saturate at LAI &gt; 3. Using hyperspectral reflectance data, we found a total chlorophyll vegetation index (TCI) responded nearly linearly to LAI values as high as 6. Similarly, a simple ratio vegetation index, based on a narrow band of wavelengths in the red edge spectral region, responded linearly to increasing LAI. Water band indices (WBI) in the 900 to 970 nm waveband were sensitive to changes in TCI as available soil water decreased. Incorporating TCI and a WBI might improve YieldTracker performance across a range of soil water conditions.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Zea mays</subject><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM1Lw0AQxRdRsFbPXoOgt7T7lc3mIFJKW63VglTE07LZzJbUmNTdRql_vaktCl48DQy_9-bNQ-iU4A4ljHf13FXlgmIsO5hwsYdahLMoxIJH-6iFMaYhSQQ9REfeLzAmJOGkhS4H77qo9Sov58FzDkU2c9q8gAuGlQOj_coHtnLBnc4_IcjL4An8ClwZ3OrSa3-MDqwuPJzsZhs9Dgez_nU4mY5u-r1JaDjFIjRpJmNrQWepZSTSPEtwLCIBFtI4YtxYziSXEeDUgEgMliTKuGUgbSajTLI2utj6Ll31VjcR1GvuDRSFLqGqvWq-jiljcQOe_QEXVe3KJptiTEiGScwbqLuFjKu8d2DV0uWv2q0VwWrTpfrtUm26bBTnO1vtjS6s06XJ_Y-MEh4zKWjDXW25j7yA9X-2qjca097oYXo_3uy-L30BsuyH4A</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Coyne, P. I.</creator><creator>Aiken, R. M.</creator><creator>Maas, S. J.</creator><creator>Lamm, F. R.</creator><general>American Society of Agronomy</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>200905</creationdate><title>Evaluating YieldTracker Forecasts for Maize in Western Kansas</title><author>Coyne, P. I. ; Aiken, R. M. ; Maas, S. J. ; Lamm, F. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-cbd87ffeadbf315a4d907656efeb7534cf438485e0bce69c0815d4f3e8fd85d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coyne, P. I.</creatorcontrib><creatorcontrib>Aiken, R. M.</creatorcontrib><creatorcontrib>Maas, S. J.</creatorcontrib><creatorcontrib>Lamm, F. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coyne, P. I.</au><au>Aiken, R. M.</au><au>Maas, S. J.</au><au>Lamm, F. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating YieldTracker Forecasts for Maize in Western Kansas</atitle><jtitle>Agronomy journal</jtitle><date>2009-05</date><risdate>2009</risdate><volume>101</volume><issue>3</issue><spage>671</spage><epage>680</epage><pages>671-680</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><coden>AGJOAT</coden><abstract>We seek to predict in‐season land productivity to guide irrigation management decisions designed to optimize water utilization in the Ogallala Aquifer region. YieldTracker is a mathematical model that simulates growth and yield of graminoid crops using weather and leaf area index (LAI) as inputs, where LAI can be derived by remote sensing. We tested this model using 3 yr of maize (Zea mays L.) yield data from Colby, KS. Four replications of three treatments—rainfed and subsurface drip irrigation (SDI) at 3.8 and 7.6 mm d−1—were compared with simulated yields (36 model runs). Results indicated that YieldTracker has potential as a decision aid for managing irrigated maize, but has insufficient mechanistic complexity to simulate yields of water‐stressed maize. YieldTracker projected canopy development well, but LAI does not necessarily correlate with canopy efficiency in capturing solar radiation and converting it to biomass and then partitioning biomass to grain under conditions of limiting soil water. Remotely sensed normalized difference vegetation index (NDVI), a surrogate for LAI, tends to saturate at LAI &gt; 3. Using hyperspectral reflectance data, we found a total chlorophyll vegetation index (TCI) responded nearly linearly to LAI values as high as 6. Similarly, a simple ratio vegetation index, based on a narrow band of wavelengths in the red edge spectral region, responded linearly to increasing LAI. Water band indices (WBI) in the 900 to 970 nm waveband were sensitive to changes in TCI as available soil water decreased. Incorporating TCI and a WBI might improve YieldTracker performance across a range of soil water conditions.</abstract><cop>Madison</cop><pub>American Society of Agronomy</pub><doi>10.2134/agronj2008.0146</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 2009-05, Vol.101 (3), p.671-680
issn 0002-1962
1435-0645
language eng
recordid cdi_proquest_miscellaneous_20072337
source Wiley Online Library Journals Frontfile Complete
subjects Agronomy. Soil science and plant productions
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Zea mays
title Evaluating YieldTracker Forecasts for Maize in Western Kansas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20YieldTracker%20Forecasts%20for%20Maize%20in%20Western%20Kansas&rft.jtitle=Agronomy%20journal&rft.au=Coyne,%20P.%20I.&rft.date=2009-05&rft.volume=101&rft.issue=3&rft.spage=671&rft.epage=680&rft.pages=671-680&rft.issn=0002-1962&rft.eissn=1435-0645&rft.coden=AGJOAT&rft_id=info:doi/10.2134/agronj2008.0146&rft_dat=%3Cproquest_cross%3E2042247611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=336830174&rft_id=info:pmid/&rfr_iscdi=true