Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production
BACKGROUND The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate‐based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48‐h in v...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2018-09, Vol.98 (12), p.4488-4494 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4494 |
---|---|
container_issue | 12 |
container_start_page | 4488 |
container_title | Journal of the science of food and agriculture |
container_volume | 98 |
creator | Templeman, James R Rogers, Michael A Cant, John P McBride, Brian W Osborne, Vern R |
description | BACKGROUND
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate‐based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48‐h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves.
RESULTS
A rice‐bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48‐h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low‐viscosity oil‐in‐water emulsion. Average dry matter disappearance of gel‐encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel.
CONCLUSION
Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.8973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2007115552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079717725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-207357dfb318ea865c6cc16e8fbeec13e5267aeed0461d6f1ea40c27d01de913</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALgehQWPACyBKbdpHWP3E8WVZVW0CVuqD76I59PXjkxMFOWuYpeOU6ncICiZUl-_O5ujqEfOTsjDMmznfZwdm61fIVWXHW6ooxzl6TVXkTleK1OCLvct4xxtq2ad6SI9HWDatlvSK_r5xDM2UaHQX6CL9oTFsY4hYDhcFSCFs_wIR0uTCxHwMWMtAfMezpBrIP9OTO-H7uaYbBTHN_Sv1AH_yUIk1zXz4HatOe9jBNmKj1GcYRIRWMzxO2kOmYop3N5OPwnrxxEDJ-eDmPyf311f3ll-r27ubr5cVtZaSSshJMS6Wt20i-Rlg3yjTG8AbXboNouEQlGg2IltUNt43jCDUzQlvGLbZcHpOTQ2yZ_HPGPHW9zwZDgAHjnDvBmOZcKSUK_fwP3cU5lbUWpVvNtRaqqNODMinmnNB1Y_I9pH3HWbeU1C0ldUtJxX56SZw3Pdq_8k8rBZwfwKMPuP9_Uvft-_XFc-QT2kqdfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079717725</pqid></control><display><type>article</type><title>Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Templeman, James R ; Rogers, Michael A ; Cant, John P ; McBride, Brian W ; Osborne, Vern R</creator><creatorcontrib>Templeman, James R ; Rogers, Michael A ; Cant, John P ; McBride, Brian W ; Osborne, Vern R</creatorcontrib><description>BACKGROUND
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate‐based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48‐h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves.
RESULTS
A rice‐bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48‐h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low‐viscosity oil‐in‐water emulsion. Average dry matter disappearance of gel‐encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel.
CONCLUSION
Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8973</identifier><identifier>PMID: 29460434</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Alginates - chemistry ; Alginic acid ; Animal Feed - analysis ; Animals ; antimicrobial ; Antimicrobial activity ; Canola oil ; Canola Oil - chemistry ; Chemical activity ; Dry matter ; Drying oils ; Encapsulation ; Gas production ; Gases - metabolism ; Gels - chemistry ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; holy basil (Ocimum sanctum) ; Incubation ; Ocimum sanctum - chemistry ; Ocimum sanctum - metabolism ; Ocimum tenuiflorum ; Oil ; Organic chemistry ; Oryza - chemistry ; Plant Extracts - chemistry ; Rumen - metabolism ; Sodium ; Sodium alginate ; Vegetable oils ; Viscosity ; Waxes ; Waxes - chemistry</subject><ispartof>Journal of the science of food and agriculture, 2018-09, Vol.98 (12), p.4488-4494</ispartof><rights>2018 Society of Chemical Industry</rights><rights>2018 Society of Chemical Industry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-207357dfb318ea865c6cc16e8fbeec13e5267aeed0461d6f1ea40c27d01de913</citedby><cites>FETCH-LOGICAL-c3533-207357dfb318ea865c6cc16e8fbeec13e5267aeed0461d6f1ea40c27d01de913</cites><orcidid>0000-0003-2048-6127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.8973$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.8973$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29460434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Templeman, James R</creatorcontrib><creatorcontrib>Rogers, Michael A</creatorcontrib><creatorcontrib>Cant, John P</creatorcontrib><creatorcontrib>McBride, Brian W</creatorcontrib><creatorcontrib>Osborne, Vern R</creatorcontrib><title>Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate‐based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48‐h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves.
RESULTS
A rice‐bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48‐h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low‐viscosity oil‐in‐water emulsion. Average dry matter disappearance of gel‐encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel.
CONCLUSION
Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry</description><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>antimicrobial</subject><subject>Antimicrobial activity</subject><subject>Canola oil</subject><subject>Canola Oil - chemistry</subject><subject>Chemical activity</subject><subject>Dry matter</subject><subject>Drying oils</subject><subject>Encapsulation</subject><subject>Gas production</subject><subject>Gases - metabolism</subject><subject>Gels - chemistry</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>holy basil (Ocimum sanctum)</subject><subject>Incubation</subject><subject>Ocimum sanctum - chemistry</subject><subject>Ocimum sanctum - metabolism</subject><subject>Ocimum tenuiflorum</subject><subject>Oil</subject><subject>Organic chemistry</subject><subject>Oryza - chemistry</subject><subject>Plant Extracts - chemistry</subject><subject>Rumen - metabolism</subject><subject>Sodium</subject><subject>Sodium alginate</subject><subject>Vegetable oils</subject><subject>Viscosity</subject><subject>Waxes</subject><subject>Waxes - chemistry</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAUBWALgehQWPACyBKbdpHWP3E8WVZVW0CVuqD76I59PXjkxMFOWuYpeOU6ncICiZUl-_O5ujqEfOTsjDMmznfZwdm61fIVWXHW6ooxzl6TVXkTleK1OCLvct4xxtq2ad6SI9HWDatlvSK_r5xDM2UaHQX6CL9oTFsY4hYDhcFSCFs_wIR0uTCxHwMWMtAfMezpBrIP9OTO-H7uaYbBTHN_Sv1AH_yUIk1zXz4HatOe9jBNmKj1GcYRIRWMzxO2kOmYop3N5OPwnrxxEDJ-eDmPyf311f3ll-r27ubr5cVtZaSSshJMS6Wt20i-Rlg3yjTG8AbXboNouEQlGg2IltUNt43jCDUzQlvGLbZcHpOTQ2yZ_HPGPHW9zwZDgAHjnDvBmOZcKSUK_fwP3cU5lbUWpVvNtRaqqNODMinmnNB1Y_I9pH3HWbeU1C0ldUtJxX56SZw3Pdq_8k8rBZwfwKMPuP9_Uvft-_XFc-QT2kqdfw</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Templeman, James R</creator><creator>Rogers, Michael A</creator><creator>Cant, John P</creator><creator>McBride, Brian W</creator><creator>Osborne, Vern R</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2048-6127</orcidid></search><sort><creationdate>201809</creationdate><title>Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production</title><author>Templeman, James R ; Rogers, Michael A ; Cant, John P ; McBride, Brian W ; Osborne, Vern R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-207357dfb318ea865c6cc16e8fbeec13e5267aeed0461d6f1ea40c27d01de913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>antimicrobial</topic><topic>Antimicrobial activity</topic><topic>Canola oil</topic><topic>Canola Oil - chemistry</topic><topic>Chemical activity</topic><topic>Dry matter</topic><topic>Drying oils</topic><topic>Encapsulation</topic><topic>Gas production</topic><topic>Gases - metabolism</topic><topic>Gels - chemistry</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>holy basil (Ocimum sanctum)</topic><topic>Incubation</topic><topic>Ocimum sanctum - chemistry</topic><topic>Ocimum sanctum - metabolism</topic><topic>Ocimum tenuiflorum</topic><topic>Oil</topic><topic>Organic chemistry</topic><topic>Oryza - chemistry</topic><topic>Plant Extracts - chemistry</topic><topic>Rumen - metabolism</topic><topic>Sodium</topic><topic>Sodium alginate</topic><topic>Vegetable oils</topic><topic>Viscosity</topic><topic>Waxes</topic><topic>Waxes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Templeman, James R</creatorcontrib><creatorcontrib>Rogers, Michael A</creatorcontrib><creatorcontrib>Cant, John P</creatorcontrib><creatorcontrib>McBride, Brian W</creatorcontrib><creatorcontrib>Osborne, Vern R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Templeman, James R</au><au>Rogers, Michael A</au><au>Cant, John P</au><au>McBride, Brian W</au><au>Osborne, Vern R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2018-09</date><risdate>2018</risdate><volume>98</volume><issue>12</issue><spage>4488</spage><epage>4494</epage><pages>4488-4494</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate‐based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48‐h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves.
RESULTS
A rice‐bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48‐h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low‐viscosity oil‐in‐water emulsion. Average dry matter disappearance of gel‐encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel.
CONCLUSION
Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>29460434</pmid><doi>10.1002/jsfa.8973</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2048-6127</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2018-09, Vol.98 (12), p.4488-4494 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2007115552 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alginates - chemistry Alginic acid Animal Feed - analysis Animals antimicrobial Antimicrobial activity Canola oil Canola Oil - chemistry Chemical activity Dry matter Drying oils Encapsulation Gas production Gases - metabolism Gels - chemistry Glucuronic Acid - chemistry Hexuronic Acids - chemistry holy basil (Ocimum sanctum) Incubation Ocimum sanctum - chemistry Ocimum sanctum - metabolism Ocimum tenuiflorum Oil Organic chemistry Oryza - chemistry Plant Extracts - chemistry Rumen - metabolism Sodium Sodium alginate Vegetable oils Viscosity Waxes Waxes - chemistry |
title | Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20a%20wax%20organogel%20and%20alginate%20gel%20complex%20on%20holy%20basil%20(Ocimum%20sanctum)%20in%20vitro%20ruminal%20dry%20matter%20disappearance%20and%20gas%20production&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Templeman,%20James%20R&rft.date=2018-09&rft.volume=98&rft.issue=12&rft.spage=4488&rft.epage=4494&rft.pages=4488-4494&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8973&rft_dat=%3Cproquest_cross%3E2079717725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079717725&rft_id=info:pmid/29460434&rfr_iscdi=true |