Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs

: The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on α4β2 and α4β4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage‐clamp experiments low concentrations of physostigmine and tacrine pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2000-12, Vol.75 (6), p.2492-2500
Hauptverfasser: Zwart, Ruud, Kleef, Regina G. D. M. van, Gotti, Cecilia, Smulders, Chantal J. G. M., Vijverberg, Henk P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2500
container_issue 6
container_start_page 2492
container_title Journal of neurochemistry
container_volume 75
creator Zwart, Ruud
Kleef, Regina G. D. M. van
Gotti, Cecilia
Smulders, Chantal J. G. M.
Vijverberg, Henk P. M.
description : The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on α4β2 and α4β4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage‐clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh‐induced ion currents. These dual effects result in bell‐shaped concentration—effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 μM physostigmine on α4β4 nicotinic receptors and amounts to 70% at 1 μM ACh. The mechanism underlying the effects of physostigmine on α4β4 ACh receptors has been investigated in detail. Potentiation of ACh‐induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh‐induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage‐dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist 125I‐epibatidine from its recognition sites on α4β4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two‐site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh‐induced ion currents. It is concluded that these acetylcholinesterase‐inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on α4‐containing nicotinic ACh receptors.
doi_str_mv 10.1046/j.1471-4159.2000.0752492.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20062717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20062717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5162-86a680c71f978d0f09499581c54568a9b41334b1048f863b63aec83b39345c4d3</originalsourceid><addsrcrecordid>eNqVkc-KFDEQh4Mo7rj6CtIoeOu28j_xto6rriyjiJ5DOpPezdDTGZO07oAHH8Fn9EnsYZoVT-IphPp-VUV9CD3B0GBg4vmmwUzimmGuGwIADUhOmCbNzR20uC3dRQsAQmoKjJygBzlvALBgAt9HJxiDAgJkgb4v43bnSyjhq68-xOKHEmwJcahiV505X_a9u459GHx13nXelVxNtZUfUxxsX62CiyUMwVUfvfO7ElOu2v3fwVx8stn_-vHzYrgO7TRquKpepfEqP0T3Ottn_2h-T9Hn1-eflm_ry_dvLpZnl7XjWJBaCSsUOIk7LdUaOtBMa66w44wLZXXLMKWsnW6jOiVoK6j1TtGWasq4Y2t6ip4d--5S_DJOC5ltyM73vR18HLOZjiiIxPKfIJYSawl8Al8cQZdizsl3ZpfC1qa9wWAOkszGHEyYg4lDfzCzJHMzhR_PU8Z269d_orOVCXg6AzY723fJDi7kW04JjimbqJdH6lvo_f4_FjDvVsv5Q38DA4Cvxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17719705</pqid></control><display><type>article</type><title>Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zwart, Ruud ; Kleef, Regina G. D. M. van ; Gotti, Cecilia ; Smulders, Chantal J. G. M. ; Vijverberg, Henk P. M.</creator><creatorcontrib>Zwart, Ruud ; Kleef, Regina G. D. M. van ; Gotti, Cecilia ; Smulders, Chantal J. G. M. ; Vijverberg, Henk P. M.</creatorcontrib><description>: The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on α4β2 and α4β4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage‐clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh‐induced ion currents. These dual effects result in bell‐shaped concentration—effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 μM physostigmine on α4β4 nicotinic receptors and amounts to 70% at 1 μM ACh. The mechanism underlying the effects of physostigmine on α4β4 ACh receptors has been investigated in detail. Potentiation of ACh‐induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh‐induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage‐dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist 125I‐epibatidine from its recognition sites on α4β4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two‐site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh‐induced ion currents. It is concluded that these acetylcholinesterase‐inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on α4‐containing nicotinic ACh receptors.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2000.0752492.x</identifier><identifier>PMID: 11080202</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford UK: Blackwell Science Ltd</publisher><subject>Acetylcholine - metabolism ; Acetylcholine - pharmacology ; acetylcholine receptor ; Acetylcholinesterase inhibitor ; Animals ; Binding, Competitive - drug effects ; Biological and medical sciences ; Bridged Bicyclo Compounds, Heterocyclic - pharmacokinetics ; Cell receptors ; Cell structures and functions ; Cells, Cultured ; Cholinesterase Inhibitors - pharmacology ; Dose-Response Relationship, Drug ; Drug Synergism ; Fundamental and applied biological sciences. Psychology ; Ion Transport - drug effects ; Ligands ; Models, Neurological ; Molecular and cellular biology ; Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine) ; Neuronal nicotinic ; Nicotinic Agonists - pharmacology ; Oocytes - drug effects ; Oocytes - metabolism ; Patch-Clamp Techniques ; Physostigmine ; Physostigmine - pharmacology ; Pyridines - pharmacokinetics ; Radioligand Assay ; Rats ; Receptors, Nicotinic - metabolism ; Tacrine ; Tacrine - pharmacology ; Two‐site receptor occupation model ; Xenopus laevis ; Xenopus oocyte</subject><ispartof>Journal of neurochemistry, 2000-12, Vol.75 (6), p.2492-2500</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5162-86a680c71f978d0f09499581c54568a9b41334b1048f863b63aec83b39345c4d3</citedby><cites>FETCH-LOGICAL-c5162-86a680c71f978d0f09499581c54568a9b41334b1048f863b63aec83b39345c4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2000.0752492.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2000.0752492.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=865134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11080202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwart, Ruud</creatorcontrib><creatorcontrib>Kleef, Regina G. D. M. van</creatorcontrib><creatorcontrib>Gotti, Cecilia</creatorcontrib><creatorcontrib>Smulders, Chantal J. G. M.</creatorcontrib><creatorcontrib>Vijverberg, Henk P. M.</creatorcontrib><title>Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>: The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on α4β2 and α4β4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage‐clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh‐induced ion currents. These dual effects result in bell‐shaped concentration—effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 μM physostigmine on α4β4 nicotinic receptors and amounts to 70% at 1 μM ACh. The mechanism underlying the effects of physostigmine on α4β4 ACh receptors has been investigated in detail. Potentiation of ACh‐induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh‐induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage‐dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist 125I‐epibatidine from its recognition sites on α4β4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two‐site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh‐induced ion currents. It is concluded that these acetylcholinesterase‐inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on α4‐containing nicotinic ACh receptors.</description><subject>Acetylcholine - metabolism</subject><subject>Acetylcholine - pharmacology</subject><subject>acetylcholine receptor</subject><subject>Acetylcholinesterase inhibitor</subject><subject>Animals</subject><subject>Binding, Competitive - drug effects</subject><subject>Biological and medical sciences</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacokinetics</subject><subject>Cell receptors</subject><subject>Cell structures and functions</subject><subject>Cells, Cultured</subject><subject>Cholinesterase Inhibitors - pharmacology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Synergism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Transport - drug effects</subject><subject>Ligands</subject><subject>Models, Neurological</subject><subject>Molecular and cellular biology</subject><subject>Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine)</subject><subject>Neuronal nicotinic</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Physostigmine</subject><subject>Physostigmine - pharmacology</subject><subject>Pyridines - pharmacokinetics</subject><subject>Radioligand Assay</subject><subject>Rats</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Tacrine</subject><subject>Tacrine - pharmacology</subject><subject>Two‐site receptor occupation model</subject><subject>Xenopus laevis</subject><subject>Xenopus oocyte</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkc-KFDEQh4Mo7rj6CtIoeOu28j_xto6rriyjiJ5DOpPezdDTGZO07oAHH8Fn9EnsYZoVT-IphPp-VUV9CD3B0GBg4vmmwUzimmGuGwIADUhOmCbNzR20uC3dRQsAQmoKjJygBzlvALBgAt9HJxiDAgJkgb4v43bnSyjhq68-xOKHEmwJcahiV505X_a9u459GHx13nXelVxNtZUfUxxsX62CiyUMwVUfvfO7ElOu2v3fwVx8stn_-vHzYrgO7TRquKpepfEqP0T3Ottn_2h-T9Hn1-eflm_ry_dvLpZnl7XjWJBaCSsUOIk7LdUaOtBMa66w44wLZXXLMKWsnW6jOiVoK6j1TtGWasq4Y2t6ip4d--5S_DJOC5ltyM73vR18HLOZjiiIxPKfIJYSawl8Al8cQZdizsl3ZpfC1qa9wWAOkszGHEyYg4lDfzCzJHMzhR_PU8Z269d_orOVCXg6AzY723fJDi7kW04JjimbqJdH6lvo_f4_FjDvVsv5Q38DA4Cvxg</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Zwart, Ruud</creator><creator>Kleef, Regina G. D. M. van</creator><creator>Gotti, Cecilia</creator><creator>Smulders, Chantal J. G. M.</creator><creator>Vijverberg, Henk P. M.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200012</creationdate><title>Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs</title><author>Zwart, Ruud ; Kleef, Regina G. D. M. van ; Gotti, Cecilia ; Smulders, Chantal J. G. M. ; Vijverberg, Henk P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5162-86a680c71f978d0f09499581c54568a9b41334b1048f863b63aec83b39345c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acetylcholine - metabolism</topic><topic>Acetylcholine - pharmacology</topic><topic>acetylcholine receptor</topic><topic>Acetylcholinesterase inhibitor</topic><topic>Animals</topic><topic>Binding, Competitive - drug effects</topic><topic>Biological and medical sciences</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacokinetics</topic><topic>Cell receptors</topic><topic>Cell structures and functions</topic><topic>Cells, Cultured</topic><topic>Cholinesterase Inhibitors - pharmacology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Synergism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Transport - drug effects</topic><topic>Ligands</topic><topic>Models, Neurological</topic><topic>Molecular and cellular biology</topic><topic>Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine)</topic><topic>Neuronal nicotinic</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Physostigmine</topic><topic>Physostigmine - pharmacology</topic><topic>Pyridines - pharmacokinetics</topic><topic>Radioligand Assay</topic><topic>Rats</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Tacrine</topic><topic>Tacrine - pharmacology</topic><topic>Two‐site receptor occupation model</topic><topic>Xenopus laevis</topic><topic>Xenopus oocyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwart, Ruud</creatorcontrib><creatorcontrib>Kleef, Regina G. D. M. van</creatorcontrib><creatorcontrib>Gotti, Cecilia</creatorcontrib><creatorcontrib>Smulders, Chantal J. G. M.</creatorcontrib><creatorcontrib>Vijverberg, Henk P. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwart, Ruud</au><au>Kleef, Regina G. D. M. van</au><au>Gotti, Cecilia</au><au>Smulders, Chantal J. G. M.</au><au>Vijverberg, Henk P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2000-12</date><risdate>2000</risdate><volume>75</volume><issue>6</issue><spage>2492</spage><epage>2500</epage><pages>2492-2500</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>: The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on α4β2 and α4β4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage‐clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh‐induced ion currents. These dual effects result in bell‐shaped concentration—effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 μM physostigmine on α4β4 nicotinic receptors and amounts to 70% at 1 μM ACh. The mechanism underlying the effects of physostigmine on α4β4 ACh receptors has been investigated in detail. Potentiation of ACh‐induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh‐induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage‐dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist 125I‐epibatidine from its recognition sites on α4β4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two‐site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh‐induced ion currents. It is concluded that these acetylcholinesterase‐inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on α4‐containing nicotinic ACh receptors.</abstract><cop>Oxford UK</cop><pub>Blackwell Science Ltd</pub><pmid>11080202</pmid><doi>10.1046/j.1471-4159.2000.0752492.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2000-12, Vol.75 (6), p.2492-2500
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_20062717
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Acetylcholine - metabolism
Acetylcholine - pharmacology
acetylcholine receptor
Acetylcholinesterase inhibitor
Animals
Binding, Competitive - drug effects
Biological and medical sciences
Bridged Bicyclo Compounds, Heterocyclic - pharmacokinetics
Cell receptors
Cell structures and functions
Cells, Cultured
Cholinesterase Inhibitors - pharmacology
Dose-Response Relationship, Drug
Drug Synergism
Fundamental and applied biological sciences. Psychology
Ion Transport - drug effects
Ligands
Models, Neurological
Molecular and cellular biology
Monoamines receptors (catecholamine, serotonine, histamine, acetylcholine)
Neuronal nicotinic
Nicotinic Agonists - pharmacology
Oocytes - drug effects
Oocytes - metabolism
Patch-Clamp Techniques
Physostigmine
Physostigmine - pharmacology
Pyridines - pharmacokinetics
Radioligand Assay
Rats
Receptors, Nicotinic - metabolism
Tacrine
Tacrine - pharmacology
Two‐site receptor occupation model
Xenopus laevis
Xenopus oocyte
title Competitive Potentiation of Acetylcholine Effects on Neuronal Nicotinic Receptors by Acetylcholinesterase‐Inhibiting Drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20Potentiation%20of%20Acetylcholine%20Effects%20on%20Neuronal%20Nicotinic%20Receptors%20by%20Acetylcholinesterase%E2%80%90Inhibiting%20Drugs&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Zwart,%20Ruud&rft.date=2000-12&rft.volume=75&rft.issue=6&rft.spage=2492&rft.epage=2500&rft.pages=2492-2500&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2000.0752492.x&rft_dat=%3Cproquest_cross%3E20062717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17719705&rft_id=info:pmid/11080202&rfr_iscdi=true