A comparative review of upscaling methods for solute transport in heterogeneous porous media
The classical Fickian model for solute transport in porous media cannot correctly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous subsurface unless its structure is completely characterized. Although the required precision is outside the reach of current field charact...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2008-11, Vol.362 (1), p.150-176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 362 |
creator | Frippiat, Christophe C. Holeyman, Alain E. |
description | The classical Fickian model for solute transport in porous media cannot correctly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous subsurface unless its structure is completely characterized. Although the required precision is outside the reach of current field characterization methods, the advection–dispersion model remains the most widely used model among practitioners. Two approaches can be adopted to solve the effect of physical heterogeneity on transport. First, based on a given characterization of the spatial structure of the subsurface, upscaling methods allow the computation of apparent scale-dependent parameters (especially longitudinal dispersivity) to be used in the classical Fickian model. In the second approach, upscaled (non-Fickian) transport equations with scale-independent parameters are used. In this paper, efforts are made to classify and review upscaling methods for Fickian transport parameters and non-Fickian upscaled transport equations for solute transport, with an emphasis on their mathematical properties and their (one-dimensional) analytical formulations. In particular, their capacity to model scale effects in apparent longitudinal dispersion is investigated. Upscaling methods and upscaled models are illustrated in the case of two three-dimensional synthetic aquifers, with lognormal hydraulic conductivity distributions characterized by variance values of 2 and 8. |
doi_str_mv | 10.1016/j.jhydrol.2008.08.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20052535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169408004228</els_id><sourcerecordid>20052535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-fec5606b0858edf50a843678bc77d4cd6b59b33f594920d2fad71cc0c88e455c3</originalsourceid><addsrcrecordid>eNqFkEtrGzEQgEVpoK7Tn1CqS3tbV4_VrvZUQkjSgCGHxLeAkKWRLbO72kpySv59tLXpNWJgYPjmoQ-hr5SsKKHNz8PqsH-1MfQrRohczUHFB7Sgsu0q1pL2I1oQwlhFm67-hD6ndCDlcV4v0PMVNmGYdNTZvwCO8OLhLw4OH6dkdO_HHR4g74NN2IWIU-iPGXCOekxTiBn7Ee8hQww7GCEcEy7VOQ1gvb5EF073Cb6c8xJtbm-ern9X64e7--urdaVryXPlwIiGNFsihQTrBNGy5k0rt6ZtbW1ssxXdlnMnurpjxDKnbUuNIUZKqIUwfIl-nOZOMfw5Qspq8MlA3-t_N6miRTDBRQHFCTQxpBTBqSn6QcdXRYmaXaqDOrucm6Sag859388L9GzFle8bn_43MyJr0bCucN9OnNNB6V0szOaREcrLkLKfsUL8OhFQfBTXUSXjYTRFVwSTlQ3-nVveABramBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20052535</pqid></control><display><type>article</type><title>A comparative review of upscaling methods for solute transport in heterogeneous porous media</title><source>Elsevier ScienceDirect Journals</source><creator>Frippiat, Christophe C. ; Holeyman, Alain E.</creator><creatorcontrib>Frippiat, Christophe C. ; Holeyman, Alain E.</creatorcontrib><description>The classical Fickian model for solute transport in porous media cannot correctly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous subsurface unless its structure is completely characterized. Although the required precision is outside the reach of current field characterization methods, the advection–dispersion model remains the most widely used model among practitioners. Two approaches can be adopted to solve the effect of physical heterogeneity on transport. First, based on a given characterization of the spatial structure of the subsurface, upscaling methods allow the computation of apparent scale-dependent parameters (especially longitudinal dispersivity) to be used in the classical Fickian model. In the second approach, upscaled (non-Fickian) transport equations with scale-independent parameters are used. In this paper, efforts are made to classify and review upscaling methods for Fickian transport parameters and non-Fickian upscaled transport equations for solute transport, with an emphasis on their mathematical properties and their (one-dimensional) analytical formulations. In particular, their capacity to model scale effects in apparent longitudinal dispersion is investigated. Upscaling methods and upscaled models are illustrated in the case of two three-dimensional synthetic aquifers, with lognormal hydraulic conductivity distributions characterized by variance values of 2 and 8.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2008.08.015</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>advection-dispersion equations ; Advection–dispersion equation ; Continuous time random walks ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; equations ; Exact sciences and technology ; Fickian models ; groundwater flow ; Hydrogeology ; hydrologic models ; Hydrology. Hydrogeology ; Inclusion models ; literature reviews ; mathematical models ; Pollution, environment geology ; porous media ; simulation models ; solutes ; Stochastic methods ; stochastic processes</subject><ispartof>Journal of hydrology (Amsterdam), 2008-11, Vol.362 (1), p.150-176</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-fec5606b0858edf50a843678bc77d4cd6b59b33f594920d2fad71cc0c88e455c3</citedby><cites>FETCH-LOGICAL-a483t-fec5606b0858edf50a843678bc77d4cd6b59b33f594920d2fad71cc0c88e455c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2008.08.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20845629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Frippiat, Christophe C.</creatorcontrib><creatorcontrib>Holeyman, Alain E.</creatorcontrib><title>A comparative review of upscaling methods for solute transport in heterogeneous porous media</title><title>Journal of hydrology (Amsterdam)</title><description>The classical Fickian model for solute transport in porous media cannot correctly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous subsurface unless its structure is completely characterized. Although the required precision is outside the reach of current field characterization methods, the advection–dispersion model remains the most widely used model among practitioners. Two approaches can be adopted to solve the effect of physical heterogeneity on transport. First, based on a given characterization of the spatial structure of the subsurface, upscaling methods allow the computation of apparent scale-dependent parameters (especially longitudinal dispersivity) to be used in the classical Fickian model. In the second approach, upscaled (non-Fickian) transport equations with scale-independent parameters are used. In this paper, efforts are made to classify and review upscaling methods for Fickian transport parameters and non-Fickian upscaled transport equations for solute transport, with an emphasis on their mathematical properties and their (one-dimensional) analytical formulations. In particular, their capacity to model scale effects in apparent longitudinal dispersion is investigated. Upscaling methods and upscaled models are illustrated in the case of two three-dimensional synthetic aquifers, with lognormal hydraulic conductivity distributions characterized by variance values of 2 and 8.</description><subject>advection-dispersion equations</subject><subject>Advection–dispersion equation</subject><subject>Continuous time random walks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fickian models</subject><subject>groundwater flow</subject><subject>Hydrogeology</subject><subject>hydrologic models</subject><subject>Hydrology. Hydrogeology</subject><subject>Inclusion models</subject><subject>literature reviews</subject><subject>mathematical models</subject><subject>Pollution, environment geology</subject><subject>porous media</subject><subject>simulation models</subject><subject>solutes</subject><subject>Stochastic methods</subject><subject>stochastic processes</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrGzEQgEVpoK7Tn1CqS3tbV4_VrvZUQkjSgCGHxLeAkKWRLbO72kpySv59tLXpNWJgYPjmoQ-hr5SsKKHNz8PqsH-1MfQrRohczUHFB7Sgsu0q1pL2I1oQwlhFm67-hD6ndCDlcV4v0PMVNmGYdNTZvwCO8OLhLw4OH6dkdO_HHR4g74NN2IWIU-iPGXCOekxTiBn7Ee8hQww7GCEcEy7VOQ1gvb5EF073Cb6c8xJtbm-ern9X64e7--urdaVryXPlwIiGNFsihQTrBNGy5k0rt6ZtbW1ssxXdlnMnurpjxDKnbUuNIUZKqIUwfIl-nOZOMfw5Qspq8MlA3-t_N6miRTDBRQHFCTQxpBTBqSn6QcdXRYmaXaqDOrucm6Sag859388L9GzFle8bn_43MyJr0bCucN9OnNNB6V0szOaREcrLkLKfsUL8OhFQfBTXUSXjYTRFVwSTlQ3-nVveABramBY</recordid><startdate>20081130</startdate><enddate>20081130</enddate><creator>Frippiat, Christophe C.</creator><creator>Holeyman, Alain E.</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20081130</creationdate><title>A comparative review of upscaling methods for solute transport in heterogeneous porous media</title><author>Frippiat, Christophe C. ; Holeyman, Alain E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-fec5606b0858edf50a843678bc77d4cd6b59b33f594920d2fad71cc0c88e455c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>advection-dispersion equations</topic><topic>Advection–dispersion equation</topic><topic>Continuous time random walks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fickian models</topic><topic>groundwater flow</topic><topic>Hydrogeology</topic><topic>hydrologic models</topic><topic>Hydrology. Hydrogeology</topic><topic>Inclusion models</topic><topic>literature reviews</topic><topic>mathematical models</topic><topic>Pollution, environment geology</topic><topic>porous media</topic><topic>simulation models</topic><topic>solutes</topic><topic>Stochastic methods</topic><topic>stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frippiat, Christophe C.</creatorcontrib><creatorcontrib>Holeyman, Alain E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frippiat, Christophe C.</au><au>Holeyman, Alain E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative review of upscaling methods for solute transport in heterogeneous porous media</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2008-11-30</date><risdate>2008</risdate><volume>362</volume><issue>1</issue><spage>150</spage><epage>176</epage><pages>150-176</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>The classical Fickian model for solute transport in porous media cannot correctly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous subsurface unless its structure is completely characterized. Although the required precision is outside the reach of current field characterization methods, the advection–dispersion model remains the most widely used model among practitioners. Two approaches can be adopted to solve the effect of physical heterogeneity on transport. First, based on a given characterization of the spatial structure of the subsurface, upscaling methods allow the computation of apparent scale-dependent parameters (especially longitudinal dispersivity) to be used in the classical Fickian model. In the second approach, upscaled (non-Fickian) transport equations with scale-independent parameters are used. In this paper, efforts are made to classify and review upscaling methods for Fickian transport parameters and non-Fickian upscaled transport equations for solute transport, with an emphasis on their mathematical properties and their (one-dimensional) analytical formulations. In particular, their capacity to model scale effects in apparent longitudinal dispersion is investigated. Upscaling methods and upscaled models are illustrated in the case of two three-dimensional synthetic aquifers, with lognormal hydraulic conductivity distributions characterized by variance values of 2 and 8.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2008.08.015</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2008-11, Vol.362 (1), p.150-176 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_20052535 |
source | Elsevier ScienceDirect Journals |
subjects | advection-dispersion equations Advection–dispersion equation Continuous time random walks Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics equations Exact sciences and technology Fickian models groundwater flow Hydrogeology hydrologic models Hydrology. Hydrogeology Inclusion models literature reviews mathematical models Pollution, environment geology porous media simulation models solutes Stochastic methods stochastic processes |
title | A comparative review of upscaling methods for solute transport in heterogeneous porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20review%20of%20upscaling%20methods%20for%20solute%20transport%20in%20heterogeneous%20porous%20media&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Frippiat,%20Christophe%20C.&rft.date=2008-11-30&rft.volume=362&rft.issue=1&rft.spage=150&rft.epage=176&rft.pages=150-176&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2008.08.015&rft_dat=%3Cproquest_cross%3E20052535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20052535&rft_id=info:pmid/&rft_els_id=S0022169408004228&rfr_iscdi=true |